scholarly journals Model for Unconventional Superconductivity ofSr2RuO4: Effect of Impurity Scattering on Time-Reversal Breaking Triplet Pairing with a Tiny Gap

1999 ◽  
Vol 83 (7) ◽  
pp. 1423-1426 ◽  
Author(s):  
K. Miyake ◽  
O. Narikiyo
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Emilian M. Nica ◽  
Qimiao Si

AbstractRecent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple s- and d-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings that go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the sτ3 multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a d + d intra- and inter-band pairing, is shown to contrast with the more familiar d + id state in a way analogous to how the B- triplet pairing phase of 3He superfluid differs from its A- phase counterpart. In addition, we construct an analog of the sτ3 pairing for the heavy-fermion superconductor CeCu2Si2, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that d-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.


Science ◽  
2019 ◽  
Vol 366 (6462) ◽  
pp. 238-241 ◽  
Author(s):  
Yufan Li ◽  
Xiaoying Xu ◽  
M.-H. Lee ◽  
M.-W. Chu ◽  
C. L. Chien

Magnetic flux quantization is one of the defining properties of a superconductor. We report the observation of half-integer magnetic flux quantization in mesoscopic rings of superconducting β-Bi2Pd thin films. The half-quantum fluxoid manifests itself as a π phase shift in the quantum oscillation of the superconducting critical temperature. This result verifies unconventional superconductivity of β-Bi2Pd and is consistent with a spin-triplet pairing symmetry. Our findings may have implications for flux quantum bits in the context of quantum computing.


2003 ◽  
Vol 72 (7) ◽  
pp. 1718-1723 ◽  
Author(s):  
Naoki Kitaura ◽  
Hiroyoshi Itoh ◽  
Yasuhiro Asano ◽  
Yukio Tanaka ◽  
Jun-ichiro Inoue ◽  
...  

2021 ◽  
Author(s):  
◽  
William Doonan

<p>We have studied the nature of unconventional superconductivity in the rare-earth nitride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding of the mechanisms that lead to such a phenomenon in an already extremely interesting material. An approximate low energy model has been introduced for SmN based on previous bandstructure calculation and recent experimental results. This consists of the non-dispersive 4f band associated with the samarium ion crossing through the dispersive 5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstructure we need only consider the majority-spin 5d and 4f bands which lead to an essentially spinless two band system. Starting from this two band system, we apply the k dot p method to it in order to create an effective model for the system. This effective model for the material acts as the platform from which we study the possible triplet superconducting pairing. Basing our pairing on the electron-phonon interaction we have postulated the existence of triplet pairing in the 5d band, from which we have successfully characterised the pair potential in this system through the self-consistency equation. The pair potential Delta_d could be solved analytically in a special case where the Fermi level was equal to the 4f band. In this case we find that above a threshold effective coupling strength the superconducting state is established and analytically known. In contrast to this result for the more general case where the Fermi level is different to the 4f band we numerically recover a solution that was exponential in the effective coupling strength which is similar to the pairing as we expect from the single band case. Analytic solutions in this case were not able to be found, however, we know that from our numerical investigations there will exist a solution for any effective coupling strength, contrasting with the special case where the pairing amplitude can disappear below a certain threshold. In conjunction to these results we also examined the situation where the 5d and 4f bands have hybridised together in order to search for unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the 5d band, this translates to hybrid pairing between electrons in the two hybridised bands. Results from the hybridised bands system show a new singlet-like pairing Delta_S which is even in k and singlet in the hybridised band indices. Preliminary numerical results suggest that this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands. The existence of such a pairing, originating from triplet pairing, has exciting implications for the robustness of the superconductivity in the presence of disorder and/or impurities.</p>


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3167-3170
Author(s):  
HAN-YONG CHOI ◽  
NAYOUNG LEE

We calculate the singlet and triplet pairing components of F/S/F trilayers by solving the Usadel equation in the dirty limit. Here, S is a conventional singlet s-wave superconductor like Nb and F is a ferromagnet like CoFe . A particular focus is on the odd frequency triplet pairing components which have a long length scale in F region unlike the singlet pairing component. The triplet components in F/S/F are induced by the broken time reversal symmetry and the proximity effects. The cases of parallel and perpendicular orientations of the two F's are calculated and discussed for the fingerprint of the odd frequency triplet pairing components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Seokjin Bae ◽  
Hyunsoo Kim ◽  
Yun Suk Eo ◽  
Sheng Ran ◽  
I-lin Liu ◽  
...  

AbstractChiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2 with surface normal fluid response. The microwave surface impedance of the UTe2 crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2 can be a new platform to study exotic topological excitations in higher dimension.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Sparsh Mishra ◽  
Shun Tamura ◽  
Akito Kobayashi ◽  
Yukio Tanaka

Sign in / Sign up

Export Citation Format

Share Document