scholarly journals Heat-Shock and Redox-Dependent Functional Switching of an h-Type Arabidopsis Thioredoxin from a Disulfide Reductase to a Molecular Chaperone

2009 ◽  
Vol 150 (2) ◽  
pp. 552-561 ◽  
Author(s):  
Soo Kwon Park ◽  
Young Jun Jung ◽  
Jung Ro Lee ◽  
Young Mee Lee ◽  
Ho Hee Jang ◽  
...  
2021 ◽  
Vol 22 (7) ◽  
pp. 3700
Author(s):  
Junna Hayashi ◽  
Jennifer Ton ◽  
Sparsh Negi ◽  
Daniel E. K. M. Stephens ◽  
Dean L. Pountney ◽  
...  

Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.


2010 ◽  
Vol 38 (6) ◽  
pp. 1479-1483 ◽  
Author(s):  
Nikolaj H.T. Petersen ◽  
Thomas Kirkegaard

Lysosomes, with their arsenal of catabolic enzymes and crucial metabolic housekeeping functions are experiencing a revived research interest after having lived a rather quiet life for the last few decades. With the discovery of the interaction of the lysosomes with another ancient component of cellular homoeostasis, the molecular chaperone HSP70 (heat-shock protein 70), the stage seems set for further discoveries of the mechanisms regulating cellular and physiological stress responses to otherwise detrimental challenges.


2019 ◽  
Vol 9 (22) ◽  
pp. 4766
Author(s):  
Jin-Young Kim ◽  
Yong Hun Chi ◽  
Il Ryong Kim ◽  
Heabin Kim ◽  
Ji Hyun Jung ◽  
...  

Thioredoxins (Trxs) are proteins that act as antioxidants by facilitating the reduction of other proteins and are highly conserved in all organisms. Plant H-type Trx isoforms have different structures and perform multiple functions. Previous studies have reported that the low molecular weight AtTrx-H2 acts as a disulfide reductase and the high molecular weight AtTrx-H3 functions as an oxidoreductase and a molecular chaperone. In this study, we compared the antifungal activities of Arabidopsis Trx-H2 and -H3 with engineered proteins 2N3C and 3N2C via domain-swapping between the N- and C-terminal regions of Trx-H2 and -H3. All AtTrx-H variant proteins inhibited cell growth of various pathogenic fungal strains at pH 5.2 and pH 7.2 and showed significant intracellular accumulation in the fungal cells. Interestingly, only two engineered proteins penetrated the fungal cell wall and membrane, indicating their ability to destabilize the fungal cell membrane before internalization into the cytosol. To our knowledge, this is the first study that demonstrates novel functions of plant antioxidants AtTrx-H2 and -H3 as antifungal proteins and shows their enhanced activity using the domain swapping technique.


Sign in / Sign up

Export Citation Format

Share Document