scholarly journals The Effect of Oxidized Dopamine on the Structure and Molecular Chaperone Function of the Small Heat-Shock Proteins, αB-Crystallin and Hsp27

2021 ◽  
Vol 22 (7) ◽  
pp. 3700
Author(s):  
Junna Hayashi ◽  
Jennifer Ton ◽  
Sparsh Negi ◽  
Daniel E. K. M. Stephens ◽  
Dean L. Pountney ◽  
...  

Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nguyen Trong Tue ◽  
Kouhei Shimaji ◽  
Naoki Tanaka ◽  
Masamitsu Yamaguchi

Disorganisation and aggregation of proteins containing expanded polyglutamine (polyQ) repeats, or ectopic expression of α-synuclein, underlie neurodegenerative diseases including Alzheimer’s, Parkinson, Huntington, Creutzfeldt diseases. Small heat-shock proteins, such as αB-crystallin, act as chaperones to prevent protein aggregation and play a key role in the prevention of such protein disorganisation diseases. In this study, we have explored the potential for chaperone activity of αB-crystallin to suppress the formation of protein aggregates. We tested the ability of αB-crystallin to suppress the aggregation of a polyQ protein and α-synuclein inDrosophila. We found that αB-crystallin suppresses both the compound eye degeneration induced by polyQ and the α-synuclein-induced rough eye phenotype. Furthermore, by using histochemical staining we have determined that αB-crystallin inhibits the aggregation of polyQin vivo. These data provide a clue for the development of therapeutics for neurodegenerative diseases.


2005 ◽  
Vol 391 (2) ◽  
pp. 185-190 ◽  
Author(s):  
Renu Wadhwa ◽  
Syuichi Takano ◽  
Kamaljit Kaur ◽  
Satoshi Aida ◽  
Tomoko Yaguchi ◽  
...  

Mortalin/mtHsp70 (mitochondrial Hsp70) and HSP60 (heat-shock protein 60) are heat-shock proteins that reside in multiple subcellular compartments, with mitochondria being the predominant one. In the present study, we demonstrate that the two proteins interact both in vivo and in vitro, and that the N-terminal region of mortalin is involved in these interactions. Suppression of HSP60 expression by shRNA (short hairpin RNA) plasmids caused the growth arrest of cancer cells similar to that obtained by suppression of mortalin expression by ribozymes. An overexpression of mortalin, but not of HSP60, extended the in vitro lifespan of normal fibroblasts (TIG-1). Taken together, this study for the first time delineates: (i) molecular interactions of HSP60 with mortalin; (ii) their co- and exclusive localizations in vivo; (iii) their involvement in tumorigenesis; and (iv) their functional distinction in pathways involved in senescence.


1982 ◽  
Vol 2 (3) ◽  
pp. 286-292
Author(s):  
S C Wadsworth

At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites.


2008 ◽  
Vol 3 (1) ◽  
pp. 155892500800300 ◽  
Author(s):  
Michael J. McClure ◽  
Scott A. Sell ◽  
Catherine P. Barnes ◽  
Whitney C. Bowen ◽  
Gary L. Bowlin

The purpose of this study was to establish whether material properties of elastin co-electrospun with polydioxanone (PDO) would change over time in both the uncross-linked state and the cross-linked state. First, uncross-linked scaffolds were placed in phosphate buffered saline (PBS) for three separate time periods: 15 minutes, 1 hour, and 24 hours, and subsequently tested using uniaxial materials testing. Several cross-linking reagents were then investigated to verify their ability to crosslink elastin: 1–ethyl-3–(dimethylaminopropyl)-carbodiimide (EDC), ethylene glycol diglycidyl ether (EGDE), and genipin. Uniaxial tensile testing was performed on scaffolds cross-linked with EDC and genipin, yielding results that warranted further investigation for PDO-elastin blends. Material properties of the cross-linked scaffolds were then found within range of both pig femoral artery and human femoral artery. These results demonstrate PDO-elastin blends could potentially be favorable as vascular grafts, thus warranting future in vitro and in vivo studies.


2017 ◽  
Vol 37 (11) ◽  
Author(s):  
Jayasankar Mohanakrishnan Kaimal ◽  
Ganapathi Kandasamy ◽  
Fabian Gasser ◽  
Claes Andréasson

ABSTRACT Protein aggregation is intimately associated with cellular stress and is accelerated during aging, disease, and cellular dysfunction. Yeast cells rely on the ATP-consuming chaperone Hsp104 to disaggregate proteins together with Hsp70. Hsp110s are ancient and abundant chaperones that form complexes with Hsp70. Here we provide in vivo data showing that the Saccharomyces cerevisiae Hsp110s Sse1 and Sse2 are essential for Hsp104-dependent protein disaggregation. Following heat shock, complexes of Hsp110 and Hsp70 are recruited to protein aggregates and function together with Hsp104 in the disaggregation process. In the absence of Hsp110, targeting of Hsp70 and Hsp104 to the aggregates is impaired, and the residual Hsp104 that still reaches the aggregates fails to disaggregate. Thus, coordinated activities of both Hsp104 and Hsp110 are required to reactivate aggregated proteins. These findings have important implications for the understanding of how eukaryotic cells manage misfolded and amyloid proteins.


1996 ◽  
Vol 132 (3) ◽  
pp. 335-344 ◽  
Author(s):  
H Aizawa ◽  
K Sutoh ◽  
I Yahara

Cofilin is a low molecular weight actin-modulating protein whose structure and function are conserved among eucaryotes. Cofilin exhibits in vitro both a monomeric actin-sequestering activity and a filamentous actin-severing activity. To investigate in vivo functions of cofilin, cofilin was overexpressed in Dictyostelium discoideum cells. An increase in the content of D. discoideum cofilin (d-cofilin) by sevenfold induced a co-overproduction of actin by threefold. In cells over-expressing d-cofilin, the amount of filamentous actin but not that of monomeric actin was increased. Overexpressed d-cofilin co-sedimented with actin filaments, suggesting that the sequestering activity of d-cofilin is weak in vivo. The overexpression of d-cofilin increased actin bundles just beneath ruffling membranes where d-cofilin was co-localized. The overexpression of d-cofilin also stimulated cell movement as well as membrane ruffling. We have demonstrated in vitro that d-cofilin transformed latticework of actin filaments cross-linked by alpha-actinin into bundles probably by severing the filaments. D. discoideum cofilin may sever actin filaments in vivo and induce bundling of the filaments in the presence of cross-linking proteins so as to generate contractile systems involved in membrane ruffling and cell movement.


2008 ◽  
Vol 29 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Romina A Badin ◽  
Michael Modo ◽  
Mike Cheetham ◽  
David L Thomas ◽  
David G Gadian ◽  
...  

Heat shock proteins (HSPs) function as molecular chaperones involved in protein folding, transport and degradation and, in addition, they can promote cell survival both in vitro and in vivo after a range of stresses. Although some in vivo studies have suggested that HSP27 and HSP70 can be neuroprotective, current evidence is limited, particularly when HSPs have been delivered after an insult. The effect of overexpressing HSPs after transient occlusion of the middle cerebral artery in rats was investigated by delivering an attenuated herpes simplex viral vector (HSV-1) engineered to express HSP27 or HSP70 30 mins after tissue reperfusion. Magnetic resonance imaging scans were used to determine lesion size and cerebral blood flow at six different time points up to 1 month after stroke. Animals underwent two sensorimotor tests at the same time points to assess the relationship between lesion size and function. Results indicate that post-ischaemic viral delivery of HSP27, but not of HSP70, caused a statistically significant reduction in lesion size and induced a significant behavioural improvement compared with controls. This is the first evidence of effective post-ischaemic gene therapy with a viral vector expressing HSP27 in an experimental model of stroke.


2000 ◽  
Vol 44 (1) ◽  
pp. 200-204 ◽  
Author(s):  
Francesca Pica ◽  
Anna Teresa Palamara ◽  
Antonio Rossi ◽  
Alessandra De Marco ◽  
Carla Amici ◽  
...  

ABSTRACT 9-Deoxy-Δ9,Δ12-13,14-dihydro-prostaglandin D2 (Δ12-PGJ2), a natural cyclopentenone metabolite of prostaglandin D2, is shown to possess therapeutic efficacy against influenza A virus A/PR8/34 (H1N1) infection in vitro and in vivo. The results indicate that the antiviral activity is associated with induction of cytoprotective heat shock proteins and suggest novel strategies for treatment of influenza virus infection.


2004 ◽  
Vol 96 (5) ◽  
pp. 1943-1953 ◽  
Author(s):  
Larry A. Sonna ◽  
C. Bruce Wenger ◽  
Scott Flinn ◽  
Holly K. Sheldon ◽  
Michael N. Sawka ◽  
...  

This study examined gene expression changes associated with exertional heat injury (EHI) in vivo and compared these changes to in vitro heat shock responses previously reported by our laboratory. Peripheral blood mononuclear cell (PBMC) RNA was obtained from four male Marine recruits (ages 17-19 yr) who presented with symptoms consistent with EHI, core temperatures ranging from 39.3 to 42.5°C, and elevations in serum enzymes such as creatine kinase. Controls were age- and gender-matched Marines from whom samples were obtained before and several days after an intense field-training exercise in the heat (“The Crucible”). Expression analysis was performed on Affymetrix arrays (containing ∼12,600 sequences) from pooled samples obtained at three times for EHI group (at presentation, 2-3 h after cooling, and 1-2 days later) and compared with control values (average signals from two chips representing pre- and post-Crucible samples). After post hoc filtering, the analysis identified 361 transcripts that had twofold or greater increases in expression at one or more of the time points assayed and 331 transcripts that had twofold or greater decreases in expression. The affected transcripts included sequences previously shown to be heat-shock responsive in PBMCs in vitro (including both heat shock proteins and non-heat shock proteins), a number of sequences whose changes in expression had not previously been noted as a result of in vitro heat shock in PBMCs (including several interferon-induced sequences), and several nonspecific stress response genes (including ubiquitin C and dual-specificity phosphatase-1). We conclude that EHI produces a broad stress response that is detectable in PBMCs and that heat stress per se can only account for some of the observed changes in transcript expression. The molecular evidence from these patients is thus consistent with the hypothesis that EHI can result from cumulative effects of multiple adverse interacting stimuli.


Sign in / Sign up

Export Citation Format

Share Document