scholarly journals ABNORMAL POLLEN TUBE GUIDANCE1, an Endoplasmic Reticulum-Localized Mannosyltransferase Homolog of GLYCOSYLPHOSPHATIDYLINOSITOL10 in Yeast and PHOSPHATIDYLINOSITOL GLYCAN ANCHOR BIOSYNTHESIS B in Human, Is Required for Arabidopsis Pollen Tube Micropylar Guidance and Embryo Development

2014 ◽  
Vol 165 (4) ◽  
pp. 1544-1556 ◽  
Author(s):  
Xin Ren Dai ◽  
Xin-Qi Gao ◽  
Guang Hui Chen ◽  
Li Li Tang ◽  
Hao Wang ◽  
...  
1975 ◽  
Vol 53 (24) ◽  
pp. 2958-2977 ◽  
Author(s):  
Jack Maze ◽  
Shu-Chang Lin

In Stipa elmeri Piper & Brodie ex Scribn., the pollen tube enters at the filiform apparatus of the degenerated synergid. The degenerated synergid has electron-dense cytoplasm in which organelles are not discernible. All other cells of the mature megagametophyte have nuclei, endoplasmic reticulum, plastids, mitochondria, dictyosomes, and vacuoles. Starch is found in the persistent synergid (in minute quantities), egg, and central cell. Lipids occur in the persistent synergid, central cell, and antipodals. The filiform apparatuses of the two synergids are hypothesized to perform different functions. In the degenerated synergid, the filiform apparatus serves to increase the surface area of the plasma membrane and thereby to offer a large area for pollen-tube-growth-directing compounds to diffuse out of the synergid. In the persistent synergid, the filiform apparatus is part of a suite of features which indicate that the persistent synergid is involved in the transference of materials into the megagametophyte. Another possible function of the persistent synergid is to aid in establishing the polarity of the egg. The pollen grain and tube have distinctive polysaccharide spheres that serve to delimit the pollen tube cytoplasm after discharge into the degenerated synergid. Associated with the degenerated synergid are bodies of dense materials as seen under electron microscopy, and bodies of RNA and protein as determined histochemically. These are probably the same thing and come from the degenerating synergid. The antipodals are the most cytologically active cells of the megagametophyte. They have some features which are characteristic of transfer cells and possibly function in the transference of materials into the megagametophyte. Other studies (Brink and Cooper 1944) have indicated that grass antipodals are involved in the control of endosperm development. The active cytoplasm of the antipodals may reflect the synthesis or transference of growth-controlling substances.


2020 ◽  
Vol 26 (8) ◽  
pp. 567-575
Author(s):  
Isao Takehara ◽  
Hideki Igarashi ◽  
Jun Kawagoe ◽  
Koki Matsuo ◽  
Kyoko Takahashi ◽  
...  

Abstract Endoplasmic reticulum (ER) stress is associated with several aging-related diseases; however, the mechanism underlying age-related deterioration of oocyte quality is unclear. Here, we used post-ovulatory, in vivo aged mouse oocytes as a model. Super-ovulated oocytes harvested from the oviduct at 14 h and 20 h post-hCG injection were designated as ‘fresh’ and ‘aged’, respectively. Embryo development following IVF was compared between fresh, aged and ER stress-induced oocytes. Expression of the ER stress marker GRP78 was examined at each stage. To evaluate the effect of salubrinal, an ER stress suppressor, on embryo development following IVF, expression levels of GRP78 and phospho-eukaryotic initiation factor 2 alpha were compared between aged and salubrinal-treated aged oocytes. Embryo transfer of salubrinal-treated aged oocytes was performed to examine the safety of salubrinal. Similar to aged oocytes, ER stress-induced oocytes showed lower fertilization rates and poor embryo development. Following IVF, expression of GRP78 decreased with embryo development. GRP78 expression was significantly higher in aged oocytes than in fresh oocytes. Salubrinal lowered GRP78 levels and improved embryo development. No adverse effect of salubrinal treatment was found on the birth weight of pups or on organogenesis in mice. The limitation of this study was that protein kinase-like ER kinase was the only ER stress pathway examined; the role of IRE1 and ATF6 pathways was not considered. Nevertheless, salubrinal can significantly improve embryo development in in vivo aged oocytes undergoing ER stress. Hence, regulation of ER stress might represent a promising therapeutic strategy to overcome poor oocyte quality.


2019 ◽  
Vol 29 (19) ◽  
pp. 3256-3265.e5 ◽  
Author(s):  
Zengxiang Ge ◽  
Yuling Zhao ◽  
Ming-Che Liu ◽  
Liang-Zi Zhou ◽  
Lele Wang ◽  
...  

2019 ◽  
Vol 167 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Osamu Udagawa ◽  
Naotada Ishihara

Abstract Mitochondria play many critical roles in cells, not only by supplying energy, but also by supplying metabolites, buffering Ca2+ levels and regulating apoptosis. During oocyte maturation and subsequent embryo development, mitochondria change their morphology by membrane fusion and fission, and coordinately undergo multiple cellular events with the endoplasmic reticulum (ER) closely apposed. Mitochondrial fusion and fission, known as mitochondrial dynamics, are regulated by family members of dynamin GTPases. Oocytes in animal models with these regulators artificially altered exhibit morphological abnormalities in nearby mitochondria and at the ER interface that are reminiscent of major cytoplasmic dysmorphisms in human assisted reproductive technology, in which a portion of mature oocytes retrieved from patients contain cytoplasmic dysmorphisms associated with mitochondria and ER abnormal morphologies. Understanding organelle morpho-homeostasis in oocytes obtained from animal models will contribute to the development of novel methods for determining oocyte health and for how to deal with dysmorphic oocytes.


2016 ◽  
Vol 58 (11) ◽  
pp. 927-940 ◽  
Author(s):  
Hong-Ze Liao ◽  
Meng-Meng Zhu ◽  
Hong-Hui Cui ◽  
Xin-Yu Du ◽  
Yu Tang ◽  
...  

2012 ◽  
Vol 160 (4) ◽  
pp. 1940-1955 ◽  
Author(s):  
Youssef Chebli ◽  
Minako Kaneda ◽  
Rabah Zerzour ◽  
Anja Geitmann

2014 ◽  
Vol 42 (2) ◽  
pp. 340-345 ◽  
Author(s):  
Alexander R. Leydon ◽  
Adisorn Chaibang ◽  
Mark A. Johnson

Flowering plants have immotile sperm that develop within the pollen cytoplasm and are delivered to female gametes by a pollen tube, a highly polarized extension of the pollen cell. In many flowering plant species, including seed crop plants, hundreds of pollen tubes grow towards a limited number of ovules. This system should ensure maximal fertilization of ovules and seed production; however, we know very little about how signalling between the critical cells is integrated to orchestrate delivery of two functional sperm to each ovule. Recent studies suggest that the pollen tube changes its gene-expression programme in response to growth through pistil tissue and that this differentiation process is critical for pollen tube attraction by the female gametophyte and for release of sperm. Interestingly, these two signalling systems, called pollen tube guidance and pollen tube reception, are also species-preferential. The present review focuses on Arabidopsis pollen tube differentiation within the pistil and addresses the idea that pollen tube differentiation defines pollen tube identity and recognition by female cells. We review recent identification of genes that may control pollen tube–female gametophyte recognition and discuss how these may be involved in blocking interspecific hybridization.


2018 ◽  
Vol 219 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Benjamin Selles ◽  
Caroline Michaud ◽  
Tou-cheu Xiong ◽  
Olivier Leblanc ◽  
Mathieu Ingouff

Sign in / Sign up

Export Citation Format

Share Document