scholarly journals S RNase and Interspecific Pollen Rejection in the Genus Nicotiana: Multiple Pollen-Rejection Pathways Contribute to Unilateral Incompatibility between Self-Incompatible and Self-Compatible Species.

1996 ◽  
pp. 943-958 ◽  
Author(s):  
J. Murfett ◽  
T. J. Strabala ◽  
D. M. Zurek ◽  
B. Mou ◽  
B. Beecher ◽  
...  
2021 ◽  
Vol 22 (23) ◽  
pp. 13067
Author(s):  
Juan Vicente Muñoz-Sanz ◽  
Alejandro Tovar-Méndez ◽  
Lu Lu ◽  
Ru Dai ◽  
Bruce McClure

Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species’ pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.


2015 ◽  
Vol 9 (3) ◽  
pp. 1194-1225 ◽  
Author(s):  
Lasse Holmström ◽  
Liisa Ilvonen ◽  
Heikki Seppä ◽  
Siim Veski

2017 ◽  
Vol 7 (7) ◽  
pp. 2151-2159 ◽  
Author(s):  
Jennafer A P Hamlin ◽  
Natasha A Sherman ◽  
Leonie C Moyle

Abstract Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.


2003 ◽  
Vol 54 (380) ◽  
pp. 123-130 ◽  
Author(s):  
F. Cruz-Garcia ◽  
C. N. Hancock ◽  
B. McClure
Keyword(s):  

1993 ◽  
Vol 71 (2) ◽  
pp. 353-358 ◽  
Author(s):  
Lawrence D. Harder ◽  
Mitchell B. Cruzan ◽  
James D. Thomson

To determine whether interspecific pollen transfer could reduce seed production by two sympatric lilies, Erythronium albidum and Erythronium americanum, we hand-pollinated flowers with mixtures of conspecific and heterospecific pollen. These species exhibited typical unilateral interspecific incompatibility, i.e., pollen tubes from the self-infertile species (E. americanum) grew apparently unimpeded in styles of the self-fertile species (E. albidum), whereas the reverse cross resulted in an incompatibility reaction. Because of this asymmetrical relation and faster growth by heterospecific pollen tubes in E. albidum stigmas than by conspecific tubes, pollination with abundant heterospecific pollen reduced fruit and seed production by E. albidum, but not by E. americanum, as long as the stigma also received some conspecific pollen. Unilateral incompatibility could benefit self-infertile species in reproductive interactions with closely related self-fertile species; however, this benefit remains to be demonstrated for naturally pollinated plants. Key words: Erythronium albidum, Erythronium americanum, interspecific pollen transfer, pollination, unilateral incompatibility.


2012 ◽  
Vol 24 (11) ◽  
pp. 4607-4620 ◽  
Author(s):  
Emily Indriolo ◽  
Pirashaanthy Tharmapalan ◽  
Stephen I. Wright ◽  
Daphne R. Goring

Nature Plants ◽  
2017 ◽  
Vol 3 (7) ◽  
Author(s):  
Yoshinobu Takada ◽  
Kohji Murase ◽  
Hiroko Shimosato-Asano ◽  
Takahiro Sato ◽  
Honoka Nakanishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document