Absolute Calibration of Small-Angle Neutron Scattering Data of a Double-Crystal Diffractometer

1997 ◽  
Vol 30 (5) ◽  
pp. 857-861 ◽  
Author(s):  
F. Carsughi ◽  
D. Bellmann ◽  
J. Kulda ◽  
M. Magnani ◽  
M. Stefanon

Small-angle neutron scattering (SANS) experiments generally provide the absolute SANS cross sections and this allows quantitative results to be obtained; however, data collected at double-crystal diffractometers are frequently not normalized to absolute cross sections and they are used only for qualitative analysis. In point-geometry diffractometers, the normalization is done by comparing the scattered intensities to those of samples of known cross sections or by measuring the direct-beam intensity; in the double-crystal diffractometer, the incident flux information is contained in the rocking curve measured without a sample and this feature can therefore be used to normalize the scattered intensities to the SANS cross sections. A sample of thickness 1 mm of the Ni-based superalloy UDIMET 520 was analyzed at a double-crystal diffractometer; the SANS cross section obtained by the proposed procedure compares well with the SANS cross section found for similar materials by using conventional point-geometry diffractometers and calibrated by light water.

Author(s):  
T. M. Sabine ◽  
W. K. Bertram

Multiple scattering of neutrons by the inhomogeneities responsible for small-angle neutron scattering (SANS) during the passage of the beam through the specimen can be used to provide valuable information about the shape of the objects and the absolute value of the contrast between the scattering particles and the matrix. The neutrons emerging from the specimen are classified into those that have been scattered n times. The index n ranges from zero to infinity. The remnant of the incident beam is the group of neutrons for which n equals zero. Each group contributes separately to the scattering profile. The small-angle scattering cross section is independent of the neutron wavelength for n = 1 only. Thus collection of data as a function of specimen thickness and of neutron wavelength will provide a number of different profiles describing the same physical situation. Simultaneous analysis of these profiles provides absolute values of the cross section for scattering into the small-angle region and of the cross section for removal of neutrons from the small-angle region. So that the method can be used generally, a profile function that is a very good approximation to those in the literature is introduced. The implications for time-of-flight SANS are discussed.


1987 ◽  
Vol 20 (1) ◽  
pp. 28-40 ◽  
Author(s):  
G. D. Wignall ◽  
F. S. Bates

Absolute calibration forms a valuable diagnostic tool in small-angle neutron scattering (SANS) experiments, and allows the parameters of a given model to be restricted to the set which reproduces the observed intensity. Discrepancies between the observed and calculated intensities may arise from potential artifacts or even new physical processes and absolute calibration methods are useful in delineating these circumstances. General methods which are available for absolute scaling are discussed along with estimates of the degree of internal consistency which may be achieved between the various standards. In order to minimize the time devoted to calibration in a given experimental program, emphasis is placed on developing a set of precalibrated strongly scattering standards which may be run in the chosen experimental geometry. Comparison of such a set developed at the National Center for Small-Angle Scattering Research (Oak Ridge) with independent determinations by SANS users indicates consistency to within ± 5%.


2016 ◽  
Vol 49 (3) ◽  
pp. 934-943 ◽  
Author(s):  
X. Gu ◽  
D. F. R. Mildner

Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding to the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. The aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.


2013 ◽  
Vol 46 (3) ◽  
pp. 788-790 ◽  
Author(s):  
Andreas Michels ◽  
Jens-Peter Bick

Real-space magnetic small-angle neutron scattering data from nanocrystalline cobalt and nickel have been analysed in terms of a recently developed micromagnetic theory for the autocorrelation function of the spin misalignment [Michels (2010).Phys. Rev. B,82, 024433]. The approach provides information on the exchange-stiffness constant and on the mean magnetic `anisotropy-field' radius.


1985 ◽  
Vol 18 (6) ◽  
pp. 467-472 ◽  
Author(s):  
N. F. Berk ◽  
K. A. Hardman-Rhyne

Microstructural parameters of high-purity alumina powder are determined quantitatively throughout the bulk of the material using small-angle neutron scattering techniques. A unified theoretical and experimental approach for analyzing multiple scattering data is developed to obtain values for particle size, volume fraction and surface area. It is shown how particle size and volume fraction can be measured in a practical way from SANS data totally dominated by incoherent multiple scattering (`beam broadening'). The general phase-shift dependence of single-particle scattering is incorporated into the multiple scattering formalism, and it is also shown that the diffractive limit (small phase shift) applies even for phase shifts as large as unity (particle radii of order 1 μm). The stability of the Porod law against multiple scattering and the phase-shift scale are described, a useful empirical formula for analysis of beam broadening data is exhibited, and the applicability of the formulations to polydispersed systems is discussed.


2018 ◽  
Vol 60 (10) ◽  
pp. 2097-2102
Author(s):  
V. T. Lebedev ◽  
N. P. Yevlampieva ◽  
M. V. Bermeshev ◽  
A. A. Szhogina

Sign in / Sign up

Export Citation Format

Share Document