Combined method forab initiostructure solution from powder diffraction data

1999 ◽  
Vol 32 (5) ◽  
pp. 864-870 ◽  
Author(s):  
H. Putz ◽  
J. C. Schön ◽  
M. Jansen

A new direct-space method forabinitiosolution of crystal structures from powder diffraction diagrams is presented. The approach consists of a combined global optimization (`Pareto optimization') of the difference between the calculated and the measured diffraction pattern and of the potential energy of the system. This concept has been tested successfully on a large variety of ionic and intermetallic compounds.

2019 ◽  
Vol 234 (4) ◽  
pp. 257-268 ◽  
Author(s):  
Carina Schlesinger ◽  
Michael Bolte ◽  
Martin U. Schmidt

Abstract Structure solution of molecular crystals from powder diffraction data by real-space methods becomes challenging when the total number of degrees of freedom (DoF) for molecular position, orientation and intramolecular torsions exceeds a value of 20. Here we describe the structure determination from powder diffraction data of three pharmaceutical salts or cocrystals, each with four molecules per asymmetric unit on general position: Lamivudine camphorsulfonate (1, P 21, Z=4, Z′=2; 31 DoF), Theophylline benzamide (2, P 41, Z=8, Z′=2; 23 DoF) and Aminoglutethimide camphorsulfonate hemihydrate [3, P 21, Z=4, Z′=2; 31 DoF (if the H2O molecule is ignored)]. In the salts 1 and 3 the cations and anions have two intramolecular DoF each. The molecules in the cocrystal 2 are rigid. The structures of 1 and 2 could be solved without major problems by DASH using simulated annealing. For compound 3, indexing, space group determination and Pawley fit proceeded without problems, but the structure could not be solved by the real-space method, despite extensive trials. By chance, a single crystal of 3 was obtained and the structure was determined by single-crystal X-ray diffraction. A post-analysis revealed that the failure of the real-space method could neither be explained by common sources of error such as incorrect indexing, wrong space group, phase impurities, preferred orientation, spottiness or wrong assumptions on the molecular geometry or other user errors, nor by the real-space method itself. Finally, is turned out that the structure solution failed because of problems in the extraction of the integrated reflection intensities in the Pawley fit. With suitable extracted reflection intensities the structure of 3 could be determined in a routine way.


2005 ◽  
Vol 38 (4) ◽  
pp. 688-693 ◽  
Author(s):  
V. Brodski ◽  
R. Peschar ◽  
H. Schenk

A new software package has been developed, namedOrgana, forab initiosolution of crystal structures from powder diffraction data by direct-space methods. The package contains energy-guiding Monte Carlo and grid-search algorithms and is based on a combined global minimization of theRfactor and a potential energy function of the system with the option of local minimization of the cost function for each generated trial structure. Basically, the potential energy function consists of van der Waals interactions, but harmonic potentials can be added to impose soft distance restraints. The program was successfully applied to the structure determination of a series of melamine phosphate compounds. The program is freely available (for all Windows platforms) from the correspondence author upon request.


1999 ◽  
Vol 14 (4) ◽  
pp. 258-260 ◽  
Author(s):  
W. Paszkowicz

X-ray powder diffraction pattern for InN synthesized using a microwave plasma source of nitrogen is reported. The data were obtained with the help of an automated Bragg-Brentano diffractometer using Ni-filtered CuKα radiation. The lattice parameters for the wurtzite-type unit cell are ao=3.5378(1) Å, co=5.7033(1) Å. The calculated density is 6.921±0.002 g/cm3.


1993 ◽  
Vol 8 (4) ◽  
pp. 249-250 ◽  
Author(s):  
Chan Park ◽  
Robert L. Snyder

The X-ray powder diffraction pattern for a sample of the high-temperature superconducting phase Tl0.5Pb0.5Sr2CaCu2O6.5+δ has been determined. The sample was prepared by a molten salt technique and had a Tc of 96 K.


1989 ◽  
Vol 4 (1) ◽  
pp. 34-35 ◽  
Author(s):  
Diano Antenucci ◽  
Francois Fontan ◽  
Andre-Mathieu Fransolet

AbstractWolfeite (Fe0.59Mn0.40Mg0.01)2PO4(OH) from the Hagendorf-Sud pegmatite, Bavaria, Federal Republic of Germany, yields unit-cell parameters of: a = 12.319(1), b = 13.280(2), c = 9.840(1) Å and β = 108° 24(1). Dmeas. = 3.82(2); Dcalc. = 3.88. An indexed powder diffraction pattern is given.


2003 ◽  
Vol 36 (2) ◽  
pp. 239-243 ◽  
Author(s):  
V. Brodski ◽  
R. Peschar ◽  
H. Schenk

A new direct-space method forab initiosolution of crystal structures from powder diffraction data is presented. The approach consists of a combined global minimization ofRwpand the potential energy of the system. This method was tested on two organic compounds with known structure and also applied successfully in the structure determination of the previously unknown structure of melamine pyrophosphate.


2014 ◽  
Vol 70 (a1) ◽  
pp. C143-C143
Author(s):  
Hongliang Xu

Knowledge of the structural arrangement of atoms in solids is necessary to facilitate the study of their properties. The best and most detailed structural information is obtained when the diffraction pattern of a single crystal a few tenths of a millimeter in each dimension is analyzed, but growing high-quality crystals of this size is often difficult, sometimes impossible. However, many crystallization experiments that do not yield single crystals do yield showers of randomly oriented micro-crystals that can be exposed to X-rays simultaneously to produce a powder diffraction pattern. Direct Methods routinely solve crystal structures when single-crystal diffraction data are available at atomic resolution (1.0-1.2Å), but fail to determine micro-crystal structures due to reflections overlapping and low-resolution powder diffraction data. By artificially and intelligently extending the measured data to atomic resolution, we have successfully solved structures having low-resolution diffraction data that were hard to solve by other direct-method based computation procedures. The newly developed method, Powder Shake-and-Bake, is implemented in a computer program PowSnB. PowSnB can be incorporated into the state-of-the-art software package EXPO that includes powder data reduction, structure determination and structure refinement. The new combination could have potential to solve structures that have never been solved before by direct-methods approach.


Sign in / Sign up

Export Citation Format

Share Document