A zirconium zwitterion containing a caged amine H atom

2003 ◽  
Vol 59 (11) ◽  
pp. m494-m496 ◽  
Author(s):  
Alastair J. Nielson ◽  
Chaohong Shen ◽  
Joyce M. Waters

The crystallographically centrosymmetric zwitterion bis[tris(3,5-dimethyl-2-oxidobenzyl-κO)ammonium]zirconium(IV) crystallizes as the chloroform disolvate, [Zr(C27H31NO3)2]·2CHCl3, with the two molecules of chloroform closely associated with two of the aromatic rings. The Zr atom has a distorted octahedral geometry with three phenoxy O atoms from each of the two ligands coordinated to it. Charge balance is maintained by protonation of each N atom, which then forms intramolecular hydrogen-bonding interactions to all three adjacent O atoms.

2009 ◽  
Vol 65 (6) ◽  
pp. m702-m702 ◽  
Author(s):  
Wen-Dong Song ◽  
Hao Wang ◽  
Shi-Jie Li ◽  
Pei-Wen Qin ◽  
Shi-Wei Hu

In the title mononuclear complex, [Co(C9H4N2O4)(H2O)5]·5H2O, the CoIIatom exhibits a distorted octahedral geometry involving an N atom of a 1H-benzimidazole-5,6-dicarboxylate ligand and five water O atoms. A supramolecular network is generated through intermolecular O—H...O hydrogen-bonding interactions involving the coordinated and uncoordinated water molecules and the carboxyl O atoms of the organic ligand. An intermolecular N—H...O hydrogen bond is also observed.


2013 ◽  
Vol 69 (11) ◽  
pp. m625-m625
Author(s):  
Wenhai Cao

The complete binuclear complex in [Fe2(C7H4NO4)4(OH)2]·2H2O, is generated by the application twofold symmetry. The FeIIIatom is coordinated by the O atoms of two bridging hydroxyl groups and by two N and two O atoms from two pyridine-2,5-dicarboxylato ligands, forming a distorted octahedral geometry. The Fe...Fe separation within the dinuclear complex is 3.0657 (4) Å. In the crystal, O—H...O and C—H...O hydrogen-bonding interactions connect the molecules into a three-dimensional supramolecular network.


2012 ◽  
Vol 68 (4) ◽  
pp. m500-m500 ◽  
Author(s):  
Ya-Feng Li ◽  
Yue Gao ◽  
Yue Xu ◽  
Xiao-Lin Qin ◽  
Wen-Yuan Gao

In the crystal structure of the title compound, [Zn(C6H2O5)(H2O)3]n, an infinite chain is formed along [001] by linking of the Zn(H2O)3entities with one carboxylate group of the furan-2,5-dicarboxylate ligand. Adjacent chains are linked by Owater—H...O hydrogen-bonding interactions. The Zn(H2O)3O3polyhedron displays a distorted octahedral geometry with one weak Zn—Ocarboxylatecoordination [2.433 (8) A°] and two water molecules located in axial positions. Except for one of the axial water molecules and two adjacent H atoms, the other atoms (including H atoms) possess site symmetrym.


2012 ◽  
Vol 68 (6) ◽  
pp. m824-m825 ◽  
Author(s):  
Ichraf Chérif ◽  
Jawher Abdelhak ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

In the crystal structure of the title compound, (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O, the CrIII atom adopts a distorted octahedral geometry being coordinated by two O atoms of two cis water molecules and four O atoms from two chelating oxalate dianions. The cis-diaquadioxalatochromate(III) anions, 2-amino-5-chloropyridinium cations and uncoordinated water molecules are linked into a three-dimensional supramolecular array by O—H...O and N—H...O hydrogen-bonding interactions. One of the two independent lattice water molecules is situated on a twofold rotation axis.


2017 ◽  
Vol 15 (36) ◽  
pp. 7572-7579 ◽  
Author(s):  
Antonio J. Mota ◽  
Jürgen Neuhold ◽  
Martina Drescher ◽  
Sébastien Lemouzy ◽  
Leticia González ◽  
...  

Experimental and computational evidence for unusual intramolecular hydrogen-bonding interactions is presented and discussed.


2021 ◽  
Vol 50 (35) ◽  
pp. 12088-12092
Author(s):  
Clare A. Leahy ◽  
Michael J. Drummond ◽  
Josh Vura-Weis ◽  
Alison R. Fout

Hydrogen bonding networks are vital for metallo-enzymes to function; however, modeling these systems is non-trivial. The development of 1st-row transition metal chloride complexes with intramolecular hydrogen-bonding interactions are detailed herein.


2006 ◽  
Vol 62 (4) ◽  
pp. o1330-o1332 ◽  
Author(s):  
Olga L. Ospina ◽  
Carlos A. Rojas ◽  
Daniel Vega

Longipilin acetate, C23H28O9, is a compound isolated from Espeletia killipii, a Colombian native plant. The molecule contains two non-planar rings, a ten-membered ring and a five-membered lactone. Various substituents around the ten-membered ring provide very weak intramolecular hydrogen-bonding interactions that determine the molecular folding.


2014 ◽  
Vol 70 (12) ◽  
pp. 544-546 ◽  
Author(s):  
Yamine Belamri ◽  
Fatima Setifi ◽  
Bojana M. Francuski ◽  
Sladjana B. Novaković ◽  
Setifi Zouaoui

In the title compound, [Fe(C12H12N2)(H2O)4]SO4, the central FeIIion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four water O atoms in a distorted octahedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3) to 2.110 (3) Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3) and 2.177 (3) Å]. The chelating N—Fe—N angle of 75.6 (1)° shows the largest deviation from an ideal octahedral geometry; the other coordination angles deviate from ideal values by 0.1 (1) to 9.1 (1)°. O—H...O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to theabplane. Neighbouring layers further interact by means of C—H...O and π–π interactions involving the laterally positioned bipyridine rings. The perpendicular distance between π–π interacting rings is 3.365 (2) Å, with a centroid–centroid distance of 3.702 (3) Å.


2012 ◽  
Vol 68 (8) ◽  
pp. m1058-m1059
Author(s):  
Peng Zhang ◽  
Yu-Jie Liu ◽  
Kai-Hui Li ◽  
Guang-Rui Yang ◽  
Chong-Zhen Mei

In the title compound, [Ni(C20H13O5P)(C12H10N2)(H2O)]n, the NiIIcation is coordinated by three O atoms from two 5-(diphenylphosphinoyl)isophthalate anions, two N atoms from two 1,2-bis(pyridin-4-yl)ethene ligands and one water molecule in a distorted octahedral geometry. Both 1,2-bis(pyridin-4-yl)ethene and 5-(diphenylphosphinoyl)isophthalate bridge the NiIIcations to form polymeric layers parallel to (001). In the crystal, O—H...O hydrogen bonding links layers into a three-dimensional supramolecular structure.


2015 ◽  
Vol 71 (10) ◽  
pp. 903-907 ◽  
Author(s):  
Yongfeng Yang ◽  
Tao Li ◽  
Yanmei Chen

The title compound, poly[[diaqua-1κ2O-tetrakis(μ3-pyridine-2,3-dicarboxylato)-2:1:2′κ10N,O2:O2′,O3:O3′;2:1:2′κ8O3:O3′:N,O2-diiron(III)strontium(II)] dihydrate], {[Fe2Sr(C7H3O4)4(H2O)2]·2H2O}n, which has triclinic (P\overline{1}) symmetry, was prepared by the reaction of pyridine-2,3-dicarboxylic acid, SrCl2·6H2O and Fe(OAc)2(OH) (OAc is acetate) in the presence of imidazole in water at 363 K. In the crystal structure, the pyridine-2,3-dicarboxylate (pydc2−) ligand exhibits μ3-η1,η1:η1:η1and μ3-η1,η1:η1,η1:η1coordination modes, bridging two FeIIIcations and one SrIIcation. The SrIIcation, which is located on an inversion centre, is eight-coordinated by six O atoms of four pydc2−ligands and two water molecules. The coordination geometry of the SrIIcation can be best described as distorted dodecahedral. The FeIIIcation is six-coordinated by O and N atoms of four pydc2−ligands in a slightly distorted octahedral geometry. Each FeIIIcation bridges two neighbouring FeIIIcations to form a one-dimensional [Fe2(pydc)4]nchain. The chains are connected by SrIIcations to form a three-dimensional framework. The topology type of this framework istfj. The structure displays O—H...O and C—H...O hydrogen bonding.


Sign in / Sign up

Export Citation Format

Share Document