cationic complex
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 21 (6) ◽  
pp. 1577
Author(s):  
Nurul Husna As Saedah Bain ◽  
Noorshida Mohd Ali ◽  
Yusnita Juahir ◽  
Norhayati Hashim ◽  
Illyas Md Isa ◽  
...  

A cationic complex of iridium(III), [Ir(2,4-F2ppy)2(F2bpyta)]PF6 utilizing 1,2,4-triazolepyridyl as an anchillary ligand modified with a 2,6-difluorobenzyl substituent was synthesized and characterized. The aromatic signals of pyridyltriazole and phenylpyridine proton were detected in the 1H-NMR spectrum between 10.00 and 7.00 ppm. Only one singlet peak was detected at 8.46 ppm H(8) shifted to the upfield, demonstrating that C5 was coordinated to the central iridium metal. The bands exhibited in the range of 1555–1431 cm–1 in the IR spectrum because of the C=C and C=N aromatic rings stretching pyridine, phenyl, and triazole vibrations. The UV-Vis absorption spectrum showed a slight and broad absorbance peak at lower energy at a lmax = 371 nm (e = 6129 M−1 cm−1) in the visible range due to 1MLCT and 3MLCT transitions. Blue emission was observed in the steady-state emission spectral of [Ir(2,4-F2ppy)2(F2bpyta)]PF6 and the other two previously synthesized iridium(III) complexes in CH2Cl2 solutions (air-equilibrated) at room temperature. The spectrum of luminescence for the [Ir(2,4-F2ppy)2(F2bpyta)]PF6 (lem = 461 nm) is blue-shifted when compared to the [Ir(2,4-F2ppy)2(hpyta)]PF6 (lem = 469 nm), but red-shifted when related to the [Ir(2,4-F2ppy)2(mbpyta)]PF6 (lem = 454 nm).


IUCrData ◽  
2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Elliott B. Newman ◽  
Andrei V. Astashkin ◽  
Daniel R. Albert ◽  
Edward Rajaseelan

A new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetrafluoridoborate counter-anion, [Ir(C10H11N3)(C8H12)(C18H15P)]BF4, has been synthesized and structurally characterized. The cationic complex exhibits a distorted square-planar environment around the IrI ion. One significant non-standard hydrogen-bonding interaction exists between a hydrogen atom on the N-heterocyclic carbene ligand and a fluorine atom from the counter-ion, BF4 −. In the crystal, π–π stacking interactions are observed between one of the phenyl rings and the triazole ring. Both intermolecular and intramolecular C—H...π(ring) interactions are also observed.


IUCrData ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Jeffrey A. Rood ◽  
Chhatra B. Subedi ◽  
John P. Risell ◽  
Andrei V. Astashkin ◽  
Edward Rajaseelan

A new N-heterocyclic cationic rhodium(I) complex with a tetrafluoridoborate counter-anion, [Rh(C8H14N2)(C8H12)(C18H15P)]BF4, has been prepared and structurally characterized. The cationic complex exhibits a distorted square-planar environment around the rhodium(I) ion. Two connections are made from rhodium(I) to the carbon atom of an N-heterocylic carbene ligand and to the phosphorus atom of a triphenylphosphane ligand. The remaining two coordination sites are made via a bidentate interaction from the two olefinic bonds of cyclooctadiene to the rhodium(I) ion. The compound includes an out-sphere tetrafluoridoborate counter-anion. Within the crystal of the compound exist several weak intermolecular C—H...F interactions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 178
Author(s):  
Maria Rosaria Plutino ◽  
Andrea Romeo ◽  
Maria Angela Castriciano ◽  
Luigi Monsù Scolaro

In this study, the cationic complex [PtMe(Me2SO)(dppf)]CF3SO3 (PtFc) (dppf = 1,1′-bis(diphenylphosphino)ferrocene) was exploited as a precursor to functionalize the multi-chromophoric system hexakis(pyridyl-porphyrinato)benzene (1). The final adduct [PtFc]18-1, containing eighteen platinum(II) organometallic [PtMe(dppf)] fragments, was prepared and characterized through UV/Vis absorption, 31P{1H}-NMR spectroscopy, and fluorescence emission. UV/vis and fluorescence titrations confirmed the coordination between the platinum(II) center and all the pyridyl moieties of the peripheral substituent groups of the porphyrin. The drop casting of diluted dichloromethane solution of [PtFc]18-1 onto a glass surface afford micrometer-sized emissive porphyrin rings.


2021 ◽  
Author(s):  
Olesya Viktorovna Pokidova ◽  
◽  
Nina Sergeevna Emel’yanova ◽  
Alexander Vasilievich Kulikov ◽  
Alexander Ivanovich Kotelnikov ◽  
...  

The process of transformation of a mononuclear cationic complex with N-ethylthiourea ligands in Tris-HCl buffer, as well as in a reaction mixture with reduced glutathione and bovine serum albumin, has been studied. It was found that in the presence of glutathione, the complex dimer-izes, while its initial ligands are replaced by glutathione. In the presence of albumin, the decay product of the complex is coordinated with amino acid residues (Cys34 and His39) to form a protein-bound complex.


Author(s):  
Valeria Butera ◽  
Hermann Detz

We present a quantum-chemical investigation of the CO2 hydrogenation to methanol catalyzed by the recently proposed diphosphine–ruthenium(ii) cationic complex, Ru2, in presence of carboxylic acids.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 851-857
Author(s):  
Chong Chen ◽  
Fule Wu ◽  
Jiao Ji ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractTreatment of [(η6-p-cymene)RuCl2]2 with one equivalent of chlorodiphenylphosphine in tetrahydrofuran at reflux afforded a neutral complex [(η6-p-cymene)RuCl2(κ1-P-PPh2OH)] (1). Similarly, the reaction of [Ru(bpy)2Cl2·2H2O] (bpy = 2,2′-bipyridine) and chlorodiphenylphosphine in methanol gave a cationic complex [Ru(bpy)2Cl(κ1-P-PPh2OCH3)](PF6) (2), while treatment of [RuCl2(PPh3)3] with [2-(C5H4N)CH=N(CH2)2N(CH3)2] (L1) in tetrahydrofuran at room temperature afforded a ruthenium(II) complex [Ru(PPh3)Cl2(κ3-N,N,N-L1)] (3). Interaction of the chloro-bridged complex [Ru(CO)2Cl2]n with one equivalent of [Ph2P(o-C6H4)CH=N(CH2)2N(CH3)2] (L2) led to the isolation of [Ru(CO)Cl2(κ3-P,N,N-L2)] (4). The molecular structures of the ruthenium(II) complexes 1–4 have been determined by single-crystal X-ray crystallography. The properties of the ruthenium(II) complex 4 as a hydrogenation catalyst for acetophenone were also tested.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2401
Author(s):  
Andleeb Mehmood ◽  
Xiaowei Xu ◽  
Waseem Raza ◽  
Ki-Hyun Kim ◽  
Yi Luo

The mechanism of ethylene with vinyl ether (VE, CH2=CHOEt) copolymerization catalyzed by phosphine-sulfonate palladium complex (A) was investigated by density functional theory (DFT) calculation. On achieving an agreement between theory and experiment, it is found that the favorable 1,2-selective insertion of VE into the complex A originates from stronger hydrogen interaction between the oxygen atom of VE and the ancillary ligand of catalyst A. Additionally, VE insertion is easier into the ethylene pre-inserted intermediate than that into the catalyst to form the resultant copolymers with the major units of OEt in chain and minor units of OEt at the chain end. The effect of β-OEt and β-H elimination was explored to elucidate chain termination and the molecular weight of copolymers. Furthermore, a family of cationic catalysts has been demonstrated to copolymerize ethylene with VE along with our modified cationic complex B with higher incorporation of VE and reactivity in comparison with complex A, which was modelled computationally by increasing the strong interactions between the catalyst and monomer moiety. Other than VE, the activity of cationic complex B for copolymerization of vinyl chloride and methacrylate is also computed successfully.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3775
Author(s):  
Yulia S. Spiridonova ◽  
Yulia A. Nikolaeva ◽  
Anna S. Balueva ◽  
Elvira I. Musina ◽  
Igor A. Litvinov ◽  
...  

In order to synthesize new iron (II) complexes of 1,5-diaza-3,7-diphosphacyclooctanes with a wider variety of the substituents on ligands heteroatoms (including functionalized ones, namely, pyridyl groups) and co-ligands, it was found that these ligands with relatively small phenyl, benzyl, and pyridin-2-yl substituents on phosphorus atoms in acetonitrile formed bis-P,P-chelate cis-complexes [L2Fe(CH3CN)2]2+ (BF4)2−, whereas P-mesityl-substituted ligand formed only monoligand P,P-complex [LFe(CH3CN)4]2+ (BF4)2−. 3,7-dibenzyl-1,5-di(1′-(R)-phenylethyl)-1,5-diaza-3,7-diphosphacyclooctane reacted with hexahydrate of iron (II) tetrafluoroborate in acetone to give an unusual bis-ligand cationic complex of the composition [L2Fe(BF4)]+ BF4−, where two fluorine atoms of the tetrafluoroborate unit occupied two pseudo-equatorial positions at roughly octahedral iron ion, according to X-ray diffraction data. 1,5-diaza-3,7-diphosphacyclooctanes replaced tetrahydrofurane and one of the carbonyl ligands of cyclopentadienyldicarbonyl(tetrahydrofuran)iron (II) tetrafluoroborate to form heteroligand complexes [CpFeL(CO)]+BF4−. The structural studies in the solid phase and in solutions showed that diazadiphosphacyclooctane ligands of all complexes adopted chair-boat conformations so that their nitrogen atoms were in close proximity to the central iron ion. The redox properties of the obtained complexes were performed by the cyclic voltammetry method.


Author(s):  
Karilys González Nieves ◽  
Dalice M. Piñero Cruz

The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO4 2− counter-anions through hydrogen bonding, thus consolidating the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document