Supramolecular synthesis based on piperidone derivatives and pharmaceutically acceptable co-formers

Author(s):  
Bhupinder Sandhu ◽  
Sergiu Draguta ◽  
Tiffany L. Kinnibrugh ◽  
Victor N. Khrustalev ◽  
Tatiana V. Timofeeva

The target complexes, bis{(E,E)-3,5-bis[4-(diethylamino)benzylidene]-4-oxopiperidinium} butanedioate, 2C27H36N3O+·C4H4O42−, (II), and bis{(E,E)-3,5-bis[4-(diethylamino)benzylidene]-4-oxopiperidinium} decanedioate, 2C27H36N3O+·C10H16O42−, (III), were obtained by solvent-mediated crystallization of the active pharmaceutical ingredient (API) (E,E)-3,5-bis[4-(diethylamino)benzylidene]-4-piperidone and pharmaceutically acceptable dicarboxylic (succinic and sebacic) acids from ethanol solution. They have been characterized by melting point, IR spectroscopy and single-crystal X-ray diffraction. For the sake of comparison, the structure of the starting API, (E,E)-3,5-bis[4-(diethylamino)benzylidene]-4-piperidone methanol monosolvate, C27H35N3O·CH4O, (I), has also been studied. Compounds (II) and (III) represent salts containing H-shaped centrosymmetric hydrogen-bonded synthons, which are built from two parallel piperidinium cations and a bridging dicarboxylate dianion. In both (II) and (III), the dicarboxylate dianion resides on an inversion centre. The two cations and dianion within the H-shaped synthon are linked by two strong intermolecular N+—H...−OOC hydrogen bonds. The crystal structure of (II) includes two crystallographically independent formula units,AandB. The cation geometries of unitsAandBare different. The main N—C6H4—C=C—C(=O)—C=C—C6H4—N backbone of cationAhas a C-shaped conformation, while that of cationBadopts an S-shaped conformation. The same main backbone of the cation in (III) is practically planar. In the crystal structures of both (II) and (III), intermolecular N+—H...O=C hydrogen bonds between different H-shaped synthons further consolidate the crystal packing, forming columns in the [100] and [10\overline 1] directions, respectively. Salts (II) and (III) possess increased aqueous solubility compared with the original API and thus enhance the bioavailability of the API.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Hakan Bülbül ◽  
Yavuz Köysal ◽  
Necmi Dege ◽  
Sümeyye Gümüş ◽  
Erbil Ağar

The compound N-(1,3-dioxoisoindolin-2yl)benzamide, C15H10N2O3, was prepared by the heating of an ethanolic solution of 2-hydroxy-1H-isoindole-1,3(2H)-dione and 4-chloroaniline. The product was characterised using a combination of IR spectroscopy, SEM, and single crystal X-ray diffraction techniques. In addition to the experimental analysis, theoretical calculations were used to investigate the crystal structure in order to compare experimental and theoretical values. The X-ray diffraction analysis shows that the compound crystallises in the monoclinic space group P21/c with the geometric parameters of a=13.5324(11) Å, b=9.8982(8) Å, c=9.7080(8) Å, and β=95.425(6)°. The crystal structure is held together by a network of N-H⋯O hydrogen bonds involving the carboxamide group.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


Author(s):  
Flavien A. A. Toze ◽  
Vladimir P. Zaytsev ◽  
Lala V. Chervyakova ◽  
Elisaveta A. Kvyatkovskaya ◽  
Pavel V. Dorovatovskii ◽  
...  

The chiral title compounds, C21H18N2O2, (I), and C21H18N2OS, (II) – products of the three-component reaction between benzylamine, isatoic anhydride and furyl- or thienyl-acrolein – are isostructural and form isomorphous racemic crystals. The tetrahydropyrimidine ring in (I) and (II) adopts a sofa conformation. The amino N atom has a trigonal–pyramidal geometry [sum of the bond angles is 347.0° for both (I) and (II)], whereas the amido N atom is flat [sum of the bond angles is 359.3° for both (I) and (II)]. The furyl- and thienylethenyl substituents in (I) and (II) are planar and the conformation about the bridging C=C bond isE. These bulky fragments occupy the axial position at the quaternary C atom of the tetrahydropyrimidine ring, apparently, due to steric reasons. In the crystals, molecules of (I) and (II) form hydrogen-bonded helicoidal chains propagating along [010] by strong intermolecular N—H...O hydrogen bonds.


2013 ◽  
Vol 739 ◽  
pp. 26-29
Author(s):  
Hai Xing Liu ◽  
Jing Zhong Xiao ◽  
Huan Mei Guo ◽  
Qing Hua Zhang ◽  
Zhang Xue Yu ◽  
...  

A novel Zn complex [Zn (C12H8N2)(C4H4O5)(H2O)](H2O) has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Zn atom is six-coordinated by two phenanthroline N atoms, three O atoms from malic acid anion and one O atom from water. The crystal packing is stabilized by O-H...O hydrogen bonding interactions.


2000 ◽  
Vol 33 (6) ◽  
pp. 1351-1359 ◽  
Author(s):  
A. Ben Haj Amara ◽  
H. Ben Rhaiem ◽  
A. Plançon

Nacrite has been intercalated with two polar organic molecules: dimethyl sulfoxide (DMSO) andN-methylacetamide (NMA). The homogeneous nacrite complexes have been studied by X-ray diffraction (XRD) and infrared (IR) spectroscopy. The XRD study is based on a comparison between experimental and calculated patterns. The structures of the intercalated compounds have been determined, including the mutual positions of the layers after intercalation and the positions of the intercalated molecules in the interlayer space. It has been shown that the intercalation process causes not only a swelling of the interlayer space but also a shift in the mutual in-plane positions of the layers. This shift depends on the nature of the intercalated molecules and is related to their shape and the hydrogen bonds which are established with the surrounding surfaces. For a given molecule, the intercalation process is the same for the different polytypes of the kaolinite family. These XRD results are consistent with those of IR spectroscopy.


Author(s):  
Swastik Mondal ◽  
Monika Mukherjee ◽  
Arnab Roy ◽  
Debabrata Mukherjee

Abstract(±)-1-oxoferruginol and (±)-shonanol, two potential intermediates in the synthesis of tricyclic diterpenoid ferruginol, have been prepared and crystal structures of the compounds have been investigated using single-crystal X-ray diffraction data. The methyl groups of the isopropyl moiety in (±)-shonanol are disordered over two positions with occupation factors 0.65(1) and 0.35(1), respectively. Although the chemical structures of two compounds are very similar, a C—C single bond in the terminal six-membered ring of (±)-1-oxoferruginol is replaced by a C=C bond in (±)-shonanol, the quantitative isostructurality index calculations indicate that the structures are not isostructural. Intermolecular O—H…O hydrogen bonds between pairs of molecules in the compounds related by center of inversion lead to characteristic dimers forming R


Author(s):  
Yuliya V. Butina ◽  
Elena A. Danilova ◽  
Maxim V. Dmitriev ◽  
Aleksey V. Solomonov

For citation:Butina Yu.V., Danilova E.A., Dmitriev M.V., Solomonov А.V. Crystal structure of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 1. P. 45-49. In this work crystal data of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate is shown. This compound was characterized by IR spectroscopy and elemental analysis. The monocrystal of this compound was obtained and the structure was confirmed by single X-ray analysis. Moreover, the work describes potential application of synthesized compound. Comparative characteristics of thiourea and its known salts are demonstrated. It is known, that derivatives of thiourea have several tautomeric forms, which can be different in crystalline state or in solution. Therefore, changed scheme of the synthesis of 2-imino-4-thiobiuret is proposed. Elemental cell of crystal consists of two 1-(diaminomethylene)thiouron-1-ium cations and one sulfat anion. A full set of X-ray diffraction data was deposited in the Cambridge Structural Database (deposit CCDC 1421710) and it can be gotten from the site www.ccdc.cam.ac.uk/data_request/cif.


2013 ◽  
Vol 68 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Muhammad Monim-ul-Mehbooba ◽  
Muhammad Ramzan ◽  
Tobias Rüffe ◽  
Heinrich Lang ◽  
Shafqat Naddem ◽  
...  

A cyanido-bridged Zn(II)-Ag(I) bimetallic coordination polymer, {[Zn(phen)2(H2O){Ag(CN)2}] [Ag(CN)2]·MeOH}n (1), was prepared using ZnCl2, 1,10-phenanthroline (phen) and K[Ag(CN)2] and characterized by IR spectroscopy, thermal analysis and X-ray crystallography. The crystal structure of 1 consists of dinuclear [Zn(phen)2(H2O){Ag(CN)2}]+ cations, [Ag(CN)2]- anions and a methanol molecule. The non-coordinated [Ag(CN)2]- anions are linked to the [Zn(phen)2(H2O){Ag(CN)2}]+ complex cations through argentophilic interactions leading to the formation of chains. The chains are connected by hydrogen bonds and π-π interactions to give a 3D network.


2013 ◽  
Vol 834-836 ◽  
pp. 515-518
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Ting Ting Huang ◽  
Yang Xu ◽  
Lin Tong Wang ◽  
...  

A novel praseodymium complex C5H13O11Pr has been synthesized from hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Pr1 atom is nine coordinated by nine O atoms. The crystal packing is stabilized by O-H...O hydrogen bonding interactions.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Yang Li ◽  
Jun-Hui Zhou ◽  
Gui-Jun Han ◽  
Min-Juan Wang ◽  
Wen-Ji Sun ◽  
...  

The crystal structure of natural diterpenoid alkaloid ranaconitine isolated from Aconitum sinomontanum Nakai has been determined by single crystal X-ray diffraction analysis. The crystal presents a monoclinic system, space group C2 with Z = 4, unit cell dimensions a = 30.972(19) Å, b = 7.688(5) Å, and c = 19.632(12) Å. Moreover, the intermolecular O–H···O hydrogen bonds and weak π-π interactions play a critical role in expanding the dimensionality.


Sign in / Sign up

Export Citation Format

Share Document