scholarly journals BioMAX, a macromolecular crystallography facility at MAX IV

2021 ◽  
Vol 77 (a1) ◽  
pp. a247-a247
Author(s):  
Ana Gonzalez
2014 ◽  
Vol 70 (a1) ◽  
pp. C10-C10
Author(s):  
John Helliwell

I will give an overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications from the early days to the present, including the evolution of SR sources and on to the `ultimate storage ring'. The build of dedicated beamlines for resonant anomalous scattering, large unit cells, ever smaller crystals and studies up to ultra-high resolution are core benefits. Results include a high output of PDB depositions, the successful use of microcrystals, pushing the frontiers of using high and low photon energies and time-resolved structural studies at even sub-nanosecond resolutions. These intensively physics based developments will be complemented by biological and chemical crystallography research results, encompassing catalysis and marine coloration, as well as the public understanding of our science and its impacts. Spin off benefits include services to the pharmaceutical industry and helping develop chemical crystallography uses of SR. The development of the Laue method with SR has led to pioneering spin off developments in neutron MX, including transfer of the well validated Daresbury Laue software to various neutron facilities worldwide. Neutron MX is gathering pace as new instrumentation and dedicated sample preparation facilities are in place at reactor and spallation neutron sources; smaller samples and much larger molecular weight protein complexes are now feasible for investigation so as to establish their protonation states and bound water structure. With the X-ray lasers, closely linked to the SR developments, we anticipate the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules, as well as opening up femtosecond time-resolved diffraction structural studies. At the SR sources, a very high throughput assessment for the best crystal samples and tackling sub-micron crystals will become widespread.


2013 ◽  
Vol 20 (6) ◽  
pp. 838-842 ◽  
Author(s):  
Leonard Michel Gabriel Chavas ◽  
Tadayuki Nagae ◽  
Hiroyuki Yamada ◽  
Nobuhisa Watanabe ◽  
Yusuke Yamada ◽  
...  

Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2004 ◽  
Vol 10 (4) ◽  
pp. 319-343 ◽  
Author(s):  
A. Urzhumtsev ◽  
V.Y. Lunin

2009 ◽  
Vol 16 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Robin L. Owen ◽  
James M. Holton ◽  
Clemens Schulze-Briese ◽  
Elspeth F. Garman

Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.


2013 ◽  
Vol 425 (1) ◽  
pp. 012003 ◽  
Author(s):  
D K Schneider ◽  
L E Berman ◽  
O Chubar ◽  
W A Hendrickson ◽  
S L Hulbert ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
P. Roedig ◽  
I. Vartiainen ◽  
R. Duman ◽  
S. Panneerselvam ◽  
N. Stübe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document