Hydrogen-bonded hexagonal and pseudo-hexagonal grid motifs in supramolecular cobalt(II) and nickel(II) cupferronato complexes incorporating neutral N-donors with intermolecular NH2 connectors and solvent molecules

2001 ◽  
Vol 57 (3) ◽  
pp. 303-310 ◽  
Author(s):  
Andrea Deák ◽  
Alajos Kálmán ◽  
László Párkányi ◽  
Ionel Haiduc

The cobalt(II) and nickel(II) cupferronato (N-nitroso-N-phenylhydroxylaminato) mixed-ligand complexes of 2-aminopyridine (2-NH2py) [Co(PhN2O2)2(2-NH2py)2] (1), [Ni(PhN2O2)2(2-NH2py)2] (2) and 2,6-diamino-4-phenyl-1,3,5-triazine (dpt) [Co(PhN2O2)2(dpt)2]·[Co(PhN2O2)2(EtOH)2] (3) have been synthesized and characterized by X-ray diffraction analysis. The cobalt (1) and nickel (2) complexes are isostructural. The crystal lattice of (3) contains different neutral cobalt(II) complexes [Co(PhN2O2)2(dpt)2] (3a) and [Co(PhN2O2)2(EtOH)2] (3b). Molecules of (1)–(3) contain octahedral metal centres with all-cis-(1) and -(2) and all-trans-(3) disposal of the ligands. Intramolecular N—H...O hydrogen bonding between the NH2 groups and the O atom of the cupferronato anion can be observed in (1)–(3). Intermolecular N—H...O and N—H...N interactions between symmetry-related molecules of (1) and (2) led to hexameric aggregates which connect through common edges into a two-dimensional supramolecular network of hexagonal-grid type. In complex (3) the self-complementary dpt units of the (3a) molecules are maintained by intermolecular N—H...N hydrogen bonds, generating infinite chains. These (3a) chains are crosslinked by the (3b) subunits via N—H...O and O—H...N hydrogen bonds, thus completing the parallel two-dimensional supramolecular network consisting of pseudo-hexagonal-grid sheets. In each crystal structure the two-dimensional supramolecular networks are controlled by both hydrogen bonds and π...π stacking interactions.

2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


2016 ◽  
Vol 11 (1) ◽  
pp. 3394-3403 ◽  
Author(s):  
Sonia Trabelsi ◽  
Thierry Roisnel ◽  
Houda Marouani

The structure of bis(3-Phenylpropylammonium) dichromate(VI) was determined from X-ray diffraction data. The compound crystallizes in the monoclinic system (space group P21/c) with the lattice parameters: a = 7.9379(2) Å, b = 36.2439(16) Å, c = 7.5753(3) Å; B = 96.069(2); V= 2167.20(14) Å3 and Z = 4. The structure was solved from 4959 independent reflections with R = 0.043 and Rw = 0.105. The structure consists of discrete dichromate anions (Cr2O72-) with eclipsed conformation stacked in layers parallel to (a, c) plane at y = 0 and ½. These anions are linked via the 3-phenylpropylammonium cations by N—H…O and C—H…O hydrogen bonds, forming a two-dimensional supramolecular network. Crystal structure and spectroscopic studies are reported for the bis(3-phenylpropylammonium) dichromate(VI).


2014 ◽  
Vol 70 (2) ◽  
pp. m35-m35
Author(s):  
Jing-Wei Dai ◽  
Zhao-Yang Li ◽  
Osamu Sato

In the title complex, [Fe(NCS)2(C18H18N4)], the FeIIcation is chelated by a tris(2-pyridylmethyl)amine ligand and coordinated by two thiocyanate anions in a distorted N6octahedral geometry. In the crystal, weak C—H...S hydrogen bonds and π–π stacking interactions between parallel pyridine rings of adjacent molecules [centroid–centroid distance = 3.653 (3) Å] link the molecules into a two-dimensional supramolecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


2015 ◽  
Vol 70 (9) ◽  
pp. 631-636 ◽  
Author(s):  
Huaixian Liu ◽  
Lin Sun ◽  
Huiliang Zhou ◽  
Peipei Cen ◽  
Xiaoyong Jin ◽  
...  

AbstractStarting with 1H-3-phenyl-5-(pyridin-2-yl)-1,2,4-triazole (1-Hppt), a Co(III) complex, [Co(ppt)3] (1), has been synthesized by reaction with CoF3 under hydrothermal conditions and characterized by its infrared spectrum and elemental analysis. The structure was determined by single-crystal and powder X-ray diffraction. Density functional theory (DFT) was employed to determine the optimized geometry and preferred conformation of the free ligand. A supramolecular network is formed via π–π stacking interactions. The conformation and geometry of the ligands correspond with the calculated results.


Author(s):  
Kai-Long Zhong

A new one-dimensional NiIIcoordination polymer of 1,3,5-tris(imidazol-1-ylmethyl)benzene, namelycatena-poly[[aqua(sulfato-κO)hemi(μ-ethane-1,2-diol-κ2O:O′)[μ3-1,3,5-tris(1H-imidazol-1-ylmethyl)benzene-κ3N3,N3′,N3′′]nickel(II)] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4)(C18H18N6)(C2H6O2)0.5(H2O)]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiIIcation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands link the NiIIcations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001) plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ionsviaO—H...O hydrogen bonds.


2011 ◽  
Vol 66 (9) ◽  
pp. 930-934
Author(s):  
Xin Leng ◽  
Bingqin Yang ◽  
Yuanyuan Liu ◽  
Yi Xie ◽  
Jie Tong

Three novel nitrogen-containing macrolides have been synthesized by esterification. All of them have been characterized by infrared (IR), elemental analysis, mass spectra (MS), and 1H NMR spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction. The preparation methods and the intermolecular associations based on C-H・・・O hydrogen bonds and π- π stacking interactions are discussed.


2014 ◽  
Vol 70 (6) ◽  
pp. 562-565 ◽  
Author(s):  
Wei Zhang ◽  
Yu-Quan Feng

A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR, X-ray photoelectron spectroscopy and single-crystal X-ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIIIcentre is seven-coordinated by three O atoms and four N atoms. The coordination geometry of each BiIIIatom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembledviaO—H...O hydrogen bonds, resulting in the formation of a three-dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid-to-centroid distances of 3.461 (4) and 3.641 (4) Å.


2012 ◽  
Vol 67 (8) ◽  
pp. 791-798 ◽  
Author(s):  
Jian-Chen Geng ◽  
Cui-Huan Jiao ◽  
Jin-Ming Hao ◽  
Guang-Hua Cui

Three flexible α,ѡ-bis(5,6-dimethylbenzimidazolyl)alkane ligands with different spacers were reacted with CdX2 (X = Cl, Br, I) hydrothermally, resulting in three coordination architectures, namely [CdI2(L1)]n (1), [CdBr2(L2)]n (2), and Cd2Cl4(L3)2 (3) [L1 = 1,3-bis(5,6- dimethylbenzimidazole)propane, L2 = 1,5-bis(5,6-dimethylbenzimidazole)pentane, L3 = 1,6- bis(5,6-dimethylbenzimidazole)hexane]. They have been characterized by elemental analyses, IR spectra, thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. Complex 1displays a helical chain linked by the ligands L1, and a 2D supramolecular network is constructed through π-π stacking interactions; complex 2shows a helical chain structure with connections through two kinds of strong π-π stacking interactions into an intricate 3D supramolecular network; complex 3 contains dinuclear metallomacrocycles. The fluorescence properties of 1-3have been investigated in the solid state


Sign in / Sign up

Export Citation Format

Share Document