The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atom method for non-centrosymmetrical structures

1959 ◽  
Vol 12 (10) ◽  
pp. 813-815 ◽  
Author(s):  
G. A. Sim

Determination of the phase angles of a crystalline protein requires a series of isomorphous heavy-atom compounds, with heavy atoms attached to different sites on the protein molecule. The asymmetric unit of horse oxyhaem oglobin was found to combine with heavy atoms at two different sites which are now known to be sulphydryl groups. Altogether six different heavy - atom com pounds of haemoglobin were made which proved isomorphous on X -ray analysis. The positions of the heavy atoms were determined first by difference Patterson and Fourier projections on the centrosym metric plane of the monoclinic crystals, and later by three-dimensional correlation functions, ( F H 1 — F H 2 ) 2 being used as coefficients, where F H 1 and F H 2 are the structure factors of the two different heavy-atom compounds. The parameters and anisotropic shape factors of the heavy atoms were refined by a three-dimensional least-squares method. For each of the 1200 reflexions in the limiting sphere of (5.5 Å) -1 the structure amplitudes of all seven compounds were combined in an Argand diagram and the probability of the phase angle having a value a was calculated for oc = 0, 5, 10, ..., 355°. The coefficients for the final Fourier summation were then calculated in two different ways. In one method the vector from the origin to the centroid of the probability distribution, plotted around a circle of radius | F |, was chosen as the ‘best F’. The alternative set of coefficients was calculated, using the full, observed, value of F and the most probable value of the phase angle a. The most probable error in phase angle was found to be 23°, and the standard error in electron density to be expected in the final results 0.12 e/Å 3 .


Author(s):  
J. P. Langmore ◽  
N. R. Cozzarelli ◽  
A. V. Crewe

A system has been developed to allow highly specific derivatization of the thymine bases of DNA with mercurial compounds wich should be visible in the high resolution scanning electron microscope. Three problems must be completely solved before this staining system will be useful for base sequencing by electron microscopy: 1) the staining must be shown to be highly specific for one base, 2) the stained DNA must remain intact in a high vacuum on a thin support film suitable for microscopy, 3) the arrangement of heavy atoms on the DNA must be determined by the elastic scattering of electrons in the microscope without loss or large movement of heavy atoms.


1994 ◽  
Vol 59 (5) ◽  
pp. 1052-1058 ◽  
Author(s):  
Jan Ondráček ◽  
Jana Ondráčková ◽  
Jaroslav Maixner ◽  
František Jursík

The crystal and molecular structure of s-fac-[Co((S)-Asp)(dien)]ClO4 . HClO4 .2 H2O (dien = 1,4,7-triazaheptane) was solved by the heavy atom method. The position parameters of the non-hydrogen atoms and their anisotropic temperature parameters were refined based on 1 726 observed reflections with a final value of R = 0.073. The substance crystallizes in the orthorhombic system in the space group P212121, Z = 4, a = 8.506(1), b = 17.171(2), c = 13.277(1) Å. The structure involves hydrogen bonds between the O2, O4 and HN2 atoms of aspartic acid and the two molecules of water. The five-membered dien chelate rings take the asymmetric envelope conformations. The five-membered ring of (S)-aspartic acid possesses the symmetric envelope conformation whereas the six-membered ring exhibits the skew boat conformation.


1990 ◽  
Vol 55 (4) ◽  
pp. 1010-1014 ◽  
Author(s):  
Jiří Kameníček ◽  
Richard Pastorek ◽  
František Březina ◽  
Bohumil Kratochvíl ◽  
Zdeněk Trávníček

The crystal and molecular structure of the title compound (C8H16N2NiS4) was solved by the heavy atom method and the structure was refined anisotropically to a final R factor of R = 0.029 (wR = 0.037) for 715 observed reflections. The crystal is monoclinic, space group P21/c with a = 948.3(2), b = 776.9(2), c = 1 167.4(2) pm, β = 125.14(2)°, Z = 2. The molecule contains two four-membered NiSCS rings of approximately planar configuration with the Ni atom situated at a centre of symmetry. The molecules are arranged in chains along the c-axis of the unit cell.


1992 ◽  
Vol 57 (11) ◽  
pp. 2309-2314 ◽  
Author(s):  
Josef Loub ◽  
Zdeněk Mička ◽  
Jana Podlahová ◽  
Karel Malý ◽  
Jürgen Kopf

Structure of sodium hydrogen selenite-selenious acid (1:3) was solved by heavy-atom method and refined anisotropically to R = 0.098 for 1223 unique observed reflections. The title compound crystallizes in the Pc space group with a = 5.756(2), b = 4.911(2), c = 20.010(5) Å, β = 100.48(3)°, V = 556(1) Å3, T = 293 K, (a = 5.763(2), b = 4.878(1), c = 20.03(1) Å, β = 100.48(3)°, V = 554(1) Å3, T = 173 K), Z = 2. The structure consist of HSeO3- anions, molecules of selenious acid and Na+ cations which are octahedrally coordinated with oxygen atoms. The structure is stabilized by a system of hydrogen bonds.


1974 ◽  
Vol 52 (16) ◽  
pp. 2923-2927 ◽  
Author(s):  
André L. Beauchamp ◽  
Bernard Saperas ◽  
Roland Rivest

The compound cis-Hg(SCN)2(Phen)2 belongs to the triclinic space group [Formula: see text] with a = 13.252(5), b = 11.077(4), c = 8.443(3) Å, α = 105.20(3), β = 83.25 (3), γ = 90.92(3)°, and Z = 2. The structure was solved by the heavy atom method and refined on 1718 independent reflections to an R factor of 0.069. The crystal contains discrete molecules, in which mercury is coordinated to four nitrogen atoms from two phenanthroline molecules and to two sulfur atoms from thiocyanate groups. These donor atoms define a distorted octahedral geometry around mercury. The Hg—N bond lengths are in the range 2.42(2)–2.52(2) Å, whereas the Hg—S bonds are equal to 2.622(8) and 2.582(8) Å. The molecules are packed in layers parallel to the (110) planes and the layers are held together by normal van der Waals interactions. Within the layers, the packing of the complex is characterized by parallel stacking of phenanthroline ligands at distances of ∼3.4 Å. The terminal nitrogen atoms of the thiocyanate groups are uncoordinated.


Myoglobin from the common seal ( Phoca vitulina ) when crystallized from ammonium sulphate forms monoclinic crystals with space group the unit cell, a = 57·9Å, b = 29·6Å, c = 106·4Å, β = 102°15', contains four molecules. The method of isomorphous replacement has been used in an investigation of the centrosymmetric b -axis projection in which it has been possible to determine signs for nearly all the h0l reflexions having spacings greater than 4Å. Three independent heavy-atom derivatives were employed and the signs so determined have been used to compute a map of the electron density projected on the (010) plane. This projection has been interpreted in terms of the molecule of sperm-whale myoglobin, as deduced by Bodo, Dintzis, Kendrew & Wyckoff (1959) from a three-dimensional Fourier synthesis to 6Å resolution. The results of the interpretation show that the two myoglobin molecules are very similar in form (tertiary structure) in spite of the differences in their amino-acid composition. The relative orientation of the two unit cells with respect to the myoglobin molecule is given and a comparison is made of the positions of the heavy atoms in each molecule.


1984 ◽  
Vol 62 (3) ◽  
pp. 601-605 ◽  
Author(s):  
Masood A. Khan ◽  
Clovis Peppe ◽  
Dennis G. Tuck

The crystal structure of the title compound has been determined by the heavy atom method. The crystals are orthorhombic, space group Pbca, with unit cell dimensions a = 22.795(3) Å, b = 17.518(2) Å, c = 12.396(3) Å, Z = 8; R = 0.0409 for 1527 unique "observed" reflections. The structure is disordered, with each halogen site (X) occupied by 75% Br, 25% I. The molecule consists of two X2(tmen)In units (tmen = N,N,N′,N′-tetramethylethanediamine) with distorted trigonal bipyramidal geometry, joined by an In—In bond 2.775(2) Å in length.


Sign in / Sign up

Export Citation Format

Share Document