An X-ray diffraction determination of the crystal structure of ammonium hydrogen sulphate above the ferroelectric transition

1971 ◽  
Vol 27 (2) ◽  
pp. 272-281 ◽  
Author(s):  
R. J. Nelmes
1998 ◽  
Vol 53 (10) ◽  
pp. 1144-1148 ◽  
Author(s):  
Frank Wendland ◽  
Christian Näther ◽  
Michael Schur ◽  
Wolfgang Bensch

AbstractThe title compound has been synthesized under solvothermal conditions by the reaction of elemental chromium, antimony and selenium in a solution of 40% 1,2-ethanediamine (en) in methanol. The crystal structure consists of tetrahedral SbSe43- anions which are connected by monoprotonated 1,2-ethanediamine (enH+) cations via N-H--Se hydrogen bonding. The enH+ cations are joined via strong N-H -N hydrogen bonds between the ammonium hydrogen and the amino nitrogen atom forming four distinct chains, each built up of three crystallographically independent enH+ cations. Two of these chains are running parallel to [100], the other two are parallel to [010]. Based on this arrangement different centrosymmetric or non-centrosymmetric hydrogen bonding patterns are possible, but only in one chain the sequence of NH2 and NH3+ groups was determined by X-ray diffraction


1985 ◽  
Vol 63 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
John F. Richardson ◽  
Ted S. Sorensen

The molecular structures of exo-7-methylbicyclo[3.3.1]nonan-3-one, 3, and the endo-7-methyl isomer, 4, have been determined using X-ray-diffraction techniques. Compound 3 crystallizes in the space group [Formula: see text] with a = 15.115(1), c = 7.677(2) Å, and Z = 8 while 4 crystallizes in the space group P21 with a = 6.446(1), b = 7.831(1), c = 8.414(2) Å, β = 94.42(2)°, and Z = 2. The structures were solved by direct methods and refined to final agreement factors of R = 0.041 and R = 0.034 for 3 and 4 respectively. Compound 3 exists in a chair–chair conformation and there is no significant flattening of the chair rings. However, in 4, the non-ketone ring is forced into a boat conformation. These results are significant in interpreting what conformations may be present in the related sp2-hybridized carbocations.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Koichi Momma ◽  
Ritsuro Miyawaki ◽  
Yoshitaka Matsushita ◽  
...  

Abstract Tsugaruite was originally defined as a lead-arsenic sulfosalt from the Yunosawa mine, Aomori Prefecture, Japan. Until recently its crystal structure remained unsolved and its actual classification in the sulfosalt realm was unknown. Here the refinement of the crystal structure of tsugaruite using single-crystal X-ray diffraction data is reported. The mineral is orthorhombic, space group P2nn, with unit-cell parameters a = 8.0774(10), b = 15.1772(16), c = 38.129(4) Å, V = 4674.3(9) Å3, in agreement with previous studies. The solution of the crystal structure of this mineral revealed Cl occupying a specific position. Chlorine was thus sought and found using the electron microprobe; the average of six spot analyses gave (in wt.%): Pb 68.04, As 12.83, S 18.29, Cl 0.63, total 99.80. The empirical formula, calculated on the basis of Pb + As = 43 atoms per formula unit, is Pb28.26As14.74S49.08Cl1.52. Tsugaruite is an N = 4 plesiotypic derivative of the homologous series of Pb-Sb chloro-sulfosalts having the general formula Pb(2+2N)(Sb,Pb)(2+2N)S(2+2N)(S,Cl)(4+2N)ClN. It has a Cl/(Cl + S) atomic ratio close to that of other known Pb-Sb chloro-sulfosalts (pillaite, pellouxite) and slightly higher than that of dadsonite.


CrystEngComm ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Siriyara Jagannatha Prathapa ◽  
Cara Slabbert ◽  
Manuel A. Fernandes ◽  
Andreas Lemmerer

In situ cryocrystallisation enabled the crystal structure determination of a homologous series of low-melting n-alkyl methyl esters Cn−1H2n+1CO2CH3.


Sign in / Sign up

Export Citation Format

Share Document