The layered monodiphosphate Li9Ga3(P2O7)3(PO4)2 refined from X-ray powder data

2006 ◽  
Vol 62 (5) ◽  
pp. i112-i113 ◽  
Author(s):  
Xiao-Xuan Liu ◽  
Cheng-Xin Wang ◽  
Shu-Ming Luo ◽  
Jin-Xiao Mi

Nonalithium trigallium(III) tris[pyrophosphate(V)] diphosphate(V), Li9Ga3(P2O7)3(PO4)2, has been synthesized by a hydrothermal method and its crystal structure solved from X-ray powder diffraction data using Rietveld analysis. The structure is based on separate layers parallel to (001), consisting of GaO6 octahedra that share corners with PO4 tetrahedra and P2O7 groups. The lithium ions are located in the interstitial space.

2009 ◽  
Vol 65 (6) ◽  
pp. i44-i44 ◽  
Author(s):  
Zhen-Hua Liang ◽  
Kai-Bin Tang ◽  
Qian-Wang Chen ◽  
Hua-Gui Zheng

Rubidium dicalcium triniobate(V), RbCa2Nb3O10, has been synthesized by solid-state reaction and its crystal structure refined from X-ray powder diffraction data using Rietveld analysis. The compound is a three-layer perovskite Dion–Jacobson phase with the perovskite-like slabs derived by termination of the three-dimensional CaNbO3perovskite structure along theabplane. The rubidium ions (4/mmmsymmetry) are located in the interstitial space.


1988 ◽  
Vol 02 (02) ◽  
pp. 583-588 ◽  
Author(s):  
H. ASANO ◽  
Y. YOKOYAMA ◽  
M. NISHINO ◽  
H. KATOH ◽  
H. AKINAGA ◽  
...  

Crystal structures in solid solution of Sm 1+x Ba 2−x Cu 3 O 7−y (X = 0 - 0.4) have been investigated by Rietveld analysis of X-ray powder diffraction data. The structure changes from orthorhombic to tetragonal at x=0.2. With the increase of x, Tc decreases monotonically from 90 K and the compound becomes semiconducting at x=0.4.


1999 ◽  
Vol 14 (4) ◽  
pp. 284-288 ◽  
Author(s):  
Hoong-Kun Fun ◽  
Ping Yang ◽  
Minoru Sasaki ◽  
Masasi Inoue ◽  
Hideoki Kadomatsu

The crystal structure of γ-Mo4O11 was obtained at room temperature (296 K) by Rietveld analysis with X-ray powder diffraction data. The crystal belongs to orthorhombic system, space group: Pna21, Z=4, Mr=559.753 (Atomic weights 1977), Dx=4.1228 g/cm3, F(000)=1024.0, μ=451.293 cm−1 (Int. Tab. Vol. C, Table 4.2.4.2, p. 193, λ=1.540 60 Å), a=24.4756(5) Å, b=6.7516(1) Å, c=5.4572(1) Å, and V=901.80(3) Å3. The structure was refined to Rwp=5.60%, Rp=4.27%, Rb=3.36%, and Rf=2.74% for 65 parameters with 3541 step intensities and 3055 peaks. Goodness of the fit S=3.35.


1999 ◽  
Vol 14 (2) ◽  
pp. 130-132 ◽  
Author(s):  
Johannes J. Retief

The structure and powder diffraction data of Hägg-carbide (χ-Fe5C2) have been redetermined and improved by X-ray diffraction. Experimental values of 2θ, corrected for systematic errors, relative peak intensities, lattice spacings, and the Miller indices of 27 observed reflections up to 100° 2θ are reported. The unit cell is monoclinic (space group C2/c, Z=4) with a=11.588 Å, b=4.579 Å, c=5.059 Å, and β=97.75°. The crystal structure has been refined by Rietveld analysis, resulting in Rwp=0.073.


1987 ◽  
Vol 26 (Part 2, No. 5) ◽  
pp. L611-L612 ◽  
Author(s):  
Fujio Izumi ◽  
Hajime Asano ◽  
T\=oru Ishigaki ◽  
Akira Ono ◽  
Fujio P. Okamura

2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2016 ◽  
Vol 31 (4) ◽  
pp. 292-294 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
N. I. Lobachevskaya

A polycrystalline sample of Ca4ZrGe3O12 was synthesized using the nitrate–citrate method and heated at 850–1100 °C. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is of the garnet type with a cubic unit-cell parameter [a = 12.71299(3) Å] and the space group Ia$\bar 3$d. The structural formula is presented as Ca3[CaZr]octa[Ge]tetraO12.


Sign in / Sign up

Export Citation Format

Share Document