The mineral marrucciite: monoclinic Hg3Pb16Sb18S46

2007 ◽  
Vol 63 (11) ◽  
pp. i190-i190 ◽  
Author(s):  
František Laufek ◽  
Jiří Sejkora ◽  
Karla Fejfarová ◽  
Michal Dušek ◽  
Daniel Ozdín

Recently, a new mineral species, monoclinic marrucciite, mercury lead antimony sulfide, Hg3Pb16Sb18S46 [Orlandi et al. (2007). Eur. J. Mineral. 19, 267–279], was discovered in the Fe—Ba deposit of Buca della Vena, Apuan Alps (Italy). In that report, the crystal structure was refined to R = 0.096. Our new discovery of crystals of this sulfosalt in the Gelnica ore district, situated in the Spišsko-gemerské rudohorie mountain range, Slovak Republic, has now allowed a substantially more precise determination of the crystal structure (R = 0.024). The monoclinic unit cell contains 19 independent cation positions (including two mixed SbIII/PbII positions) and 23 independent S positions.

2013 ◽  
Vol 77 (7) ◽  
pp. 3027-3037 ◽  
Author(s):  
C. Biagioni ◽  
P. Orlandi ◽  
F. Nestola ◽  
S. Bianchin

AbstractThe new mineral species oxycalcioroméite, Ca2Sb5+2O6O, has been discovered at the Buca della Vena mine, Stazzema, Apuan Alps, Tuscany, Italy. It occurs as euhedral octahedra, up to 0.1 mm in size, embedded in dolostone lenses in the baryte + pyrite + iron oxides ore. Associated minerals are calcite, cinnabar, derbylite, dolomite, hematite, 'mica', pyrite, sphalerite and 'tourmaline'. Oxycalcioroméite is reddish-brown in colour and transparent. It is isotropic, with ncalc = 1.950.Electron microprobe analysis gave (wt.%; n = 6) Sb2O5 63.73, TiO2 3.53, SnO2 0.28, Sb2O3 10.93, V2O3 0.68, Al2O3 0.28, PbO 0.68, FeO 5.52, MnO 0.13, CaO 13.68, Na2O 0.83, F 1.20, O = F – 0.51, total 100.96. No H2O, above the detection limit, was indicated by either infrared or micro-Raman spectroscopies. The empirical formula, based on 2 cations at the B site, is (Ca1.073Fe2+0.338Sb3+0.330Na0.118Pb0.013Mn0.008)Σ=1.880(Sb5+1.734Ti0.194V0.040Al0.024Sn0.008)Σ=2.000(O6.682F0.278)Σ6.960. The crystal structure study gives a cubic unit cell, space group Fdm, with a 10.3042(7) Å, V 1094.06(13) Å3, Z = 8. The five strongest X-ray powder diffraction lines are [d(Å)I(visually estimated)(hkl)]: 3.105(m)(311); 2.977(s)(222); 2.576(m)(400); 1.824(ms)(440); and 1.556(ms)(622). The crystal structure of oxycalcioroméite has been solved by X-ray single-crystal study on the basis of 114 observed reflections, with a final R1 = 0.0114. It agrees with the general features of the members of the pyrochlore supergroup.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 702 ◽  
Author(s):  
Biagioni ◽  
Bindi ◽  
Mauro ◽  
Hålenius

The new mineral species scordariite, K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as pseudo-hexagonal tabular crystals, yellowish to brownish in color, up to 0.5 mm in size. Cleavage is perfect on {0001}. It is associated with giacovazzoite, krausite, gypsum, jarosite, alum-(K), and magnanelliite. Electron microprobe analyses give (wt %): SO3 47.31, Al2O3 0.66, Fe2O3 24.68, FeO 0.69, Na2O 0.52, K2O 17.36, H2Ocalc 15.06, total 106.28. The partitioning of Fe between Fe2+ and Fe3+ was based on Mössbauer spectroscopy. On the basis of 67 O atoms per formula unit, the empirical chemical formula is (K7.50Na0.34)Σ7.84(Fe3+6.29Al0.26Fe2+0.20)Σ6.75S12.02O50·17H2O. The ideal end-member formula can be written as K8(Fe3+0.67□0.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11. Scordariite is trigonal, space group R-3, with (hexagonal setting) a = 9.7583(12), c = 53.687(7) Å, V = 4427.4(12) Å3, Z = 3. The main diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity]: 8.3, strong; 6.6, medium; 3.777, medium; 3.299, medium; 3.189, medium; 2.884, strong. The crystal structure of scordariite has been refined using X-ray single-crystal data to a final R1 = 0.057 on the basis of 1980 reflections with Fo > 4σ(Fo) and 165 refined parameters. It can be described as a layered structure formed by three kinds of layers. As with other metavoltine-related minerals, scordariite is characterized by the occurrence of the [Fe3+3O(SO4)6(H2O)3]5− heteropolyhedral cluster.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 779 ◽  
Author(s):  
Cristian Biagioni ◽  
Luca Bindi ◽  
Anthony R. Kampf

The new mineral species magnanelliite, K3Fe3+2(SO4)4(OH)(H2O)2, was discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as steeply terminated prisms, up to 0.5 mm in length, yellow to orange-yellow in color, with a vitreous luster. Streak is pale yellow, Mohs hardness is ca. 3, and cleavage is good on {010}, fair on {100}. The measured density is 2.82(3) g/cm3. Magnanelliite is optically biaxial (+), with α = 1.628(2), β = 1.637(2), γ = 1.665(2) (white light), 2Vmeas = 60(2)°, and 2Vcalc = 59.9°. It exhibits a strong dispersion, r > v. The optical orientation is Y = b, X ^ c ~ 25° in the obtuse angle β. It is pleochroic, with X = orange yellow, Y and Z = yellow. Magnanelliite is associated with alum-(K), giacovazzoite, gypsum, jarosite, krausite, melanterite, and scordariite. Electron microprobe analyses give (wt.%): SO3 47.82, TiO2 0.05, Al2O3 0.40, Fe2O3 25.21, MgO 0.07, Na2O 0.20, K2O 21.35, H2Ocalc 6.85, total 101.95. On the basis of 19 anions per formula unit, assuming the occurrence of one (OH)− and two H2O groups, the empirical chemical formula of magnanelliite is (K2.98Na0.04)Σ3.02(Fe3+2.08Al0.05Mg0.01)Σ2.14S3.93O16(OH)(H2O)2. The ideal end-member formula can be written as K3Fe3+2(SO4)4(OH)(H2O)2. Magnanelliite is monoclinic, space group C2/c, with a = 7.5491(3), b = 16.8652(6), c = 12.1574(4) Å, β = 94.064(1)°, V = 1543.95(10) Å3, Z = 4. Strongest diffraction lines of the observed X-ray powder pattern are [d(in Å), estimated visual intensity, hkl]: 6.9, medium, 021 and 110; 4.91, medium-weak, 022; 3.612, medium-weak, 1 ¯ 32, 023, and 1 ¯ 13; 3.085, strong, 202, 150, and 1 ¯ 33; 3.006, medium, 004, 1 ¯ 51, and 151; 2.704, medium, 152 and 2 ¯ 23; 2.597, medium-weak, 2 ¯ 42; 2.410, medium-weak, 153. The crystal structure of magnanelliite has been refined using X-ray single-crystal data to a final R1 = 0.025, on the basis of 2411 reflections with Fo > 4σ(Fo) and 144 refined parameters. The crystal structure is isotypic with that of alcaparrosaite, K3Ti4+Fe3+(SO)4O(H2O)2.


2014 ◽  
Vol 78 (1) ◽  
pp. 101-117 ◽  
Author(s):  
C. Biagioni ◽  
E. Bonaccorsi ◽  
Y. Moëlo ◽  
P. Orlandi ◽  
L. Bindi ◽  
...  

AbstractThe new mineral species arsiccioite, AgHg2TlAs2S6, was discovered in the baryte-pyrite-iron oxide ore deposit exploited at the Monte Arsiccio mine, near Sant’Anna di Stazzema (Apuan Alps, Tuscany, Italy). It occurs as anhedral grains scattered in microcrystalline baryte, associated with cinnabar, laffittite, protochabournéite, pyrite, realgar, Hg-bearing sphalerite and stibnite. Arsiccioite is red, with a metallic to sub-metallic lustre. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm):R(%)]: 471.1: 29.0/29.4; 548.3: 27.6/28.3; 586.6: 26.1/26.5; 652.3: 24.2/24.6. Electron microprobe analyses give (wt.%): Cu 0.78(6), Ag 8.68(21), Zn 0.47(27), Fe 0.04(1), Hg 35.36(87), Cd 0.20(5), Tl 18.79(33), As 10.77(19), Sb 4.75(10), S 18.08(21), Se 0.07(5), total 97.99(44). On the basis of ΣMe= 6 a.p.f.u., the chemical formula is Ag0.87(2)Cu0.13(1)Zn0.08(4)Fe0.01(1)Hg1.91(5)Cd0.02(1)Tl1.00(2)(As1.56(2)Sb0.42(1))S1.98S6.12(6)Se0.01(1). Arsiccioite is tetragonal,I2m, witha10.1386(6),c11.3441(5) Å,V1166.1(2) Å3,Z= 4. The main diffraction lines of the powder diagram are [d(in Å), visually estimated intensity,hkl]: 4.195, m, 211; 3.542, m, 103; 3.025, vs, 222; 2.636, m, 114; 2.518, s, 400 and 303. The crystal structure of arsiccioite has been refined by single-crystal X-ray data to a finalR1= 0.030, on the basis of 893 observed reflections. It shows a three dimensional framework of (Hg,Ag)- centred tetrahedra (1M1 + 2M2), with channels parallel to [001] hosting TlS6and (As,Sb)S3 disymmetric polyhedra. Arsiccioite is derived from its isotype routhieriteM1CuM2Hg2TlAs2S6through the double heterovalent substitutionM1Cu++M2Hg2+→M1Hg2++M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Hg2+and Cu+, entering the largestM2 site. The ideal crystal chemical formula of arsiccioite isM1HgM2(Hg0.5Ag0.5)2TlAs2S6. The crystal chemistry of the routhierite isotypic series is discussed. Finally, the distribution of Hg ore minerals in the Apuan Alps is reviewed.


2016 ◽  
Vol 80 (4) ◽  
pp. 675-690 ◽  
Author(s):  
Cristian Biagioni ◽  
Yves Moëlo ◽  
Paolo Orlandi ◽  
Chris J. Stanley

AbstractThe new mineral species meerschautite, ideally (Ag,Cu)5.5Pb42.4(Sb,As)45.1S112O0.8, has been discovered in the baryte + pyrite ± (Pb-Zn-Ag) deposit of the Pollone mine, near Valdicastello Carducci, Apuan Alps, Tuscany, Italy. It occurs as black prismatic crystals, striated along [100], up to 2 mm long and 0.5 mm thick, associated with baryte, boulangerite, pyrite, quartz and sphalerite. Meerschautite is opaque with a metallic lustre and shows a black streak. In reflected light, meerschautite is white in colour, weakly bireflectant and non pleochroic. With crossed polars, it is distinctly anisotropic with grey to dark grey rotation tints with brownish and greenish shades. Reflectance percentages for COM wavelengths [λ (nm), Rair (%)] are: 470: 39.7/41.4; 546: 38.3/39.9; 589: 37.4/39.0; 650: 35.8/37.2. Electron-microprobe data collected on two different samples gave (wt.%): Cu 0.22, Ag 3.15, Tl 0.07, Pb 48.54, Sb 25.41, As 2.82, S 19.74, Se 0.14, Cl 0.03, sum 100.12 (# 1) and Cu 0.22, Ag 3.04, Tl 0.13, Pb 48.53, Sb 25.40, As 2.93, Bi 0.06, S 19.82, Se 0.13, Cl 0.05, sum 100.31 (# 2). On the basis of 112 anions (S+Se+Cl) per formula unit, the empirical formulae are (Ag5.29Cu0.63)∑5.92(Pb42.43Tl0.06)∑42.49(Sb37.80As6.82)∑44.62(S111.53Se0.32Cl0.15)∑112 (# 1) and (Ag5.08Cu0.62)∑5.70(Pb42.22Tl0.12)∑42.34(Sb37.61As7.07Bi0.05)∑44.73(S111.45Se0.30Cl0.25)∑112 (# 2). Main diffraction lines, corresponding to multiple hkl indices, are [d in Å (relative visual intensity)]: 3.762 (m), 3.663 (s), 3.334 (vs), 3.244 (s), 3.016 (m), 2.968 (m), 2.902 (m), 2.072 (ms). The crystal structure study gave a monoclinic unit cell, space group P21, with a = 8.2393(1), b = 43.6015(13), c = 28.3688(8) Å, β = 94.128(2)°, V = 10164.93(2) Å3, Z = 2. The crystal structure has been solved and refined to a final R1 = 0.122 on the basis of 49,037 observed reflections. The structure is based on two building blocks, both formed by a complex column with a pseudotrigonal Pb6S12 core and two arms of unequal lengths (short and long arms, respectively). Two different kinds of short arms occur in meerschautite. One is an Ag-rich arm, whereas the other shows localized Sb–O–Sb bonds. Meerschautite is an expanded derivative of owyheeite and has quasi-homeotypic relationships with sterryite and parasterryite.


2018 ◽  
Vol 82 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
Richard Pažout ◽  
Jiří Sejkora

ABSTRACTA new mineral species, staročeskéite, ideally Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, has been found at Kutná Hora ore district, Czech Republic. The mineral occurs in the late-stage Bi-mineralization associated with other lillianite homologues (gustavite, terrywallaceite, vikingite, treasurite, eskimoite and Bi-rich andorite-group minerals) and other bismuth sulfosalts (izoklakeite, cosalite and Bi-rich jamesonite) in quartz gangue. The mineral occurs as lath shaped crystals or anhedral grains up to 80 µm × 70 µm, growing together in aggregates up to 200 µm × 150 µm across. Staročeskéite is steel-grey in colour and has a metallic lustre, the calculated density is 6.185 g/cm3. In reflected light staročeskéite is greyish white; bireflectance and pleochroism are weak with greyish tints. Anisotropy is weak to medium with grey to bluish grey rotation tints. Internal reflections were not observed. The empirical formula based on electron probe microanalyses and calculated on 11 apfu is: (Ag0.68Cu0.01)Σ0.69(Pb1.56Fe0.01Cd0.01)Σ1.58(Bi1.32Sb1.37)Σ2.69(S6.04Se0.01)Σ6.05. The ideal formula is Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, which requires Ag 7.22, Pb 31.70, Bi 26.97, Sb 15.72 and S 18.39 wt.%, total 100.00 wt.%. Staročeskéite is a member of the lillianite homologous series with N = 4. Unlike gustavite and terrywallaceite, staročeskéite, similarly to lillianite, is orthorhombic, space group Cmcm, with a = 4.2539(8), b = 13.3094(8), c = 19.625(1) Å, V = 1111.1(2) Å3 and Z = 4. The structure of staročeskéite contains four sulfur sites and three metal sites: one pure Pb site and two mixed sites, M1 (0.52Bi + 0.356Ag + 0.124Sb) and M2 (0.601Sb + 0.259Pb + 0.14Bi). The mineral is characterized by the Bi:Sb ratio 1:1 (Bi/(Bi + Sb) = 0.50) and the Ag+ + Bi3+, Sb3+ ↔ 2 Pb2+ substitution (L%) equal to 70%. Thus the mineral lies between two series of the lillianite structures with N = 4, between the lillianite–gustavite series and the andorite series.


2019 ◽  
Vol 104 (12) ◽  
pp. 1851-1856 ◽  
Author(s):  
Anthony R. Kampf ◽  
John M. Hughes ◽  
Barbara P. Nash ◽  
Joe Marty

Abstract Bicapite, KNa2Mg2(H2PV145+O42)·25H2O, is a new mineral species (IMA2018-048) discovered at the Pickett Corral mine, Montrose County, Colorado, U.S.A. Bicapite occurs as square tablets up to about 0.2 mm on edge on montroseite-corvusite-bearing sandstone. Crystals are dark red-brown, often appearing black. The streak is orange, and the luster is vitreous. Bicapite is brittle, has a Mohs hardness of 1½, and displays one excellent cleavage on {100}. The measured density is 2.44(2) g/cm3. Bicapite is uniaxial (+), ω = 1.785(5), ε ≈ 1.81 (white light); pleochroism is red-brown; E > O, slight. The electron probe microanalysis and results of the crystal structure determination provided the empirical formula (based on 67 O apfu) (K1.23Na2.23Mg1.48)Σ4.94[H2.51P1.02(V13.915+Mo0.076+)Σ13.98O42]·25H2O. Bicapite is tetragonal, I4/m, with a = 11.5446(12) Å, c = 20.5460(14) Å, V = 2738.3(6) Å3, and Z = 2. The strongest four lines in the diffraction pattern are [d in Å (I) (hkl)]: 10.14 (100) (002,101); 2.978 (29) (134,206); 2.809 (11) (305); and 2.583 (11) (420,008). The atomic arrangement of bicapite was solved and refined to R1 = 0.0465 for 1008 independent reflections with I > 2σI. The structural unit is a [H2PV125+O40(V5+O)2]7– heteropolyanion composed of 12 distorted VO6 octahedra surrounding a central PO4 tetrahedron and capped on opposite sides by two VO5 square pyramids; the structural unit is a modification of the α-isomer of the Keggin anion, [XM12O40]n–. Charge balance in the structure is maintained by the [KNa2Mg2(H2O)25]7+ interstitial complex. The name bicapite is in recognition of this being the only known mineral with a structure based on a bicapped Keggin anion. The discovery of bicapite and numerous other natural polyoxometalate compounds in the Colorado Plateau uranium/vanadium deposits make that the most productive region found to date for naturally occurring polyoxometalate compounds.


2020 ◽  
Vol 58 (3) ◽  
pp. 381-394
Author(s):  
Leonid A. Pautov ◽  
Mirak A. Mirakov ◽  
Fernando Cámara ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
...  

ABSTRACT Badakhshanite-(Y), ideally Y2Mn4Al(Si2B7BeO24), is a tetrahedral sheet-structure mineral found in the Dorozhny (Road) miarolitic granitic pegmatite within the Kukurt pegmatite field 45 km E of Murghab, Eastern Pamir, Gorno-Badakhshan Autonomous Oblast, Tajikistan. Badakhshanite-(Y) occurs in medium- to coarse-grained non-graphic albite-microcline-quartz pegmatites in close association with smoky quartz, Sc-bearing spessartine, Sc-bearing tusionite, and schorl. It often grows together with Sc-bearing tusionite and occurs as single columnar crystals ranging from 50 to 400 μm in length, as inclusions in spessartine and tourmaline, and rarely as crystals in blebs along boundaries between garnet, tourmaline, and quartz. Badakhshanite-(Y) is yellow brown and has a white streak and a vitreous luster. It is brittle, with a conchoidal fracture, Mohs hardness of 6.5–7, and calculated density of 4.41 g/cm. In thin section it is transparent and pale yellow, non-pleochroic, biaxial (–), with α = 1.805(2), βcalc = 1.827, γ = 1.835(3) (λ = 590 nm); 2V (meas.) = –60(10)°. Dispersion is weak, r > v. Extinction is straight, elongation is negative. FTIR spectra show the absence of (OH) and H2O groups. Chemical analysis by electron microprobe using WDS (6 points), SIMS, and ICP-OES for B and Be gave SiO2 11.96, ThO2 0.12, Sm2O3 0.17, Gd2O3 0.30, Tb2O3 0.10, Dy2O3 0.73, Ho2O3 0.19, Er2O3 1.34, Tm2O3 0.54, Yb2O3 8.82, Lu2O3 2.32, Y2O3 16.60, Sc2O3 1.57, Al2O3 3.06, B2O3 22.06, FeO 0.94, MnO 23.33, CaO 0.58, BeO 2.84, total 97.57 wt.%.The empirical formula based on 24 O apfu is (Y1.21REE0.78Th0.01)Σ2(Mn3.47Y0.34Ca0.11Fe2+0.08)Σ4(Al0.63Sc0.24Fe2+0.06□0.07)Σ1[(Si2.10B6.69Be1.20)Σ9.99O24], where REE = (Yb0.47Lu0.12Dy0.04Er0.07Tm0.03 Ho0.01Gd0.02Sm0.01Tb0.01)Σ0.78. Badakhshanite-(Y) is orthorhombic, space group Pnma, a 12.852(1), b 4.5848(5), c 12.8539(8) Å, V 757.38(7) Å3, Z = 2. The crystal structure was refined to R1 = 4.31% based on 1431 unique [F > 4σF] reflections. In the crystal structure of badakhshanite-(Y), a layer of tetrahedra parallel to (010) is composed of four different tetrahedrally coordinated sites: Si, B(1), B(2), and T (<Si–O> = 1.623 Å, <B(1)–O> = 1.485 Å, <B(2)–O> = 1.479 Å, <T–O> = 1.557 Å), which form four-, five-, and eight-membered rings, having the composition (Si2B7BeO24). Between the sheets of tetrahedra, there are three cation sites: M(1), M(2), and M(3) (<M(1)–O> = 2.346 Å, <M(2)–O> = 2.356 Å, <M(3)–O> = 2.016 Å) occupied by Y(REE), Mn2+(Y, Ca, Fe2+), and Al(Sc), respectively. The M(1,2) sites ideally give Y2Mn4apfu; the M(3) site ideally gives Al apfu. Badakhshanite-(Y) is an Al- and Be-analogue of perettiite-(Y).


2012 ◽  
Vol 76 (5) ◽  
pp. 1247-1255 ◽  
Author(s):  
R. W. Turner ◽  
O. I. Siidra ◽  
S. V. Krivovichev ◽  
C. J. Stanley ◽  
J. Spratt

AbstractRumseyite, ideally [Pb2OF]Cl, is a new mineral species which is associated with calcite, cerussite, diaboleite, hydrocerussite and undifferentiated Mn oxides in a small cavity in 'hydrocerussite' from a manganese pod at Merehead quarry, Somerset, England. Rumseyite is tetragonal, I4/mmm, a = 4.065(1), c = 12.631(7) Å, V = 208.7(1) Å3, Z = 2. The mineral is translucent pale orange-brown with a white streak and vitreous lustre. It is brittle with perfect {100} cleavage; Dcalc = 7.71 g cm–3 (for the ideal formula, [Pb2OF]Cl). The mean refractive index in air at 589 nm is 2.15. The six strongest reflections in the X-ray powder-diffraction pattern [dmeas in Å, (Irel), (hkl)] are as follows: 2.923(100)(013), 2.875(68)(110), 3.848(41)(011), 6.306(17)(002), 1.680(14)(123), 2.110(12)(006). The crystal structure of rumseyite is based on alternating [OFPb2] and Cl layers. Rumseyite is related to other layered Pb oxyhalides. Fluorine and oxygen are statistically disordered over one crystallographic site. Rumseyite is named in honour of Michael Scott (Mike) Rumsey (1980– ), Curator and Collections Manager at the NHM (London), who discovered the mineral. The mineral and name have been approved by the IMA Commission on New Mineral Names and Classification (IMA 2011-091). The holotype specimen is in the collections of the Natural History Museum, London (specimen number BM1970,110).


Sign in / Sign up

Export Citation Format

Share Document