conchoidal fracture
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Anthony R. Kampf ◽  
Aaron J. Celestian ◽  
Barbara P. Nash ◽  
Joe Marty

ABSTRACT The new minerals allantoin (IMA2020–004a), C4H6N4O3, and natrosulfatourea (IMA2019–134), Na2(SO4)[CO(NH2)2], were found in the Rowley mine, Maricopa County, Arizona, USA, where they occur together in bat guano in association with aphthitalite and urea. Allantoin properties: colorless, transparent, untwinned blades to 0.3 mm; white streak; vitreous luster; brittle; Mohs hardness 1½; conchoidal fracture; good {100} cleavage; 1.72(2) g/cm3 density; biaxial (+) with α = 1.558(2), β = 1.593(2), γ = 1.715(3); 2V = 60(1)°; slight r > v dispersion; optical orientation: Y = b, Z ^ a = 30° in obtuse β. Natrosulfatourea properties: colorless, transparent, untwinned prisms to 0.3 mm; white streak; vitreous luster; brittle; Mohs hardness 1½; irregular fracture; perfect {100} cleavage; 1.97(2) g/cm3 density; biaxial (+) with α = 1.456(2), β = 1.464(5), γ = 1.524(2); 2V = 42(1)°; no dispersion; optical orientation: X = a, Y = c, Z = b. Quantitative chemical analyses could not be obtained for allantoin. Electron microprobe analyses provided the empirical formula Na2.02(S0.98O4)[CO(NH2)2] for natrosulfatourea. Allantoin is monoclinic, P21/c, a = 8.0304(9), b = 5.1596(5), c = 14.8011(18) Å, β = 93.017(7)°, V = 612.41(11) Å3, and Z = 4. Natrosufatourea is orthorhombic, Pbcn, a = 5.5918(4), b = 18.1814(14), c = 6.7179(5) Å, V = 682.98(9) Å3, and Z = 4. The crystal structure of allantoin (R1 = 0.0432 for 1073 I > 2σI) is the same as that reported for the equivalent organic compound. In the structure of natrosulfatourea (R1 = 0.0413 for 785 I > 2σI) NaO6 polyhedra and SO4 tetrahedra form polyhedral layers. The O atom of the CO(NH2)2 (urea) group ligates to two Na atoms and projects into the space between polyhedral layers, linking adjacent layers through hydrogen bonds.


2021 ◽  
Vol 106 (1) ◽  
pp. 105-111
Author(s):  
Anthony R. Kampf ◽  
Travis A. Olds ◽  
Jakub Plášil ◽  
Joe Marty ◽  
Samuel N. Perry ◽  
...  

Abstract Seaborgite (IMA2019-087), LiNa6K2(UO2)(SO4)5(SO3OH)(H2O), is a new mineral species from the Blue Lizard mine, Red Canyon, San Juan County, Utah, U.S.A. It is a secondary phase found on gypsum in association with copiapite, ferrinatrite, ivsite, metavoltine, and römerite. Seaborgite occurs in sprays of light-yellow, long flattened prisms or blades, up to about 0.2 mm in length. Crystals are elongated on [100], flattened on {010}, and exhibit the forms {100}, {010}, {001}, and {101}. The mineral is transparent with vitreous luster and very pale-yellow streak. It exhibits bright lime-green fluorescence under a 405 nm laser. The Mohs hardness is ~2½. The mineral has brittle tenacity, curved or conchoidal fracture, and one good cleavage on {100}. The measured density is 2.97(2) g/cm3. The mineral is immediately soluble in H2O at room temperature. The mineral is optically biaxial (–), α = 1.505(2), β = 1.522(2), γ = 1.536(2) (white light); 2Vmeas = 85(1)°; moderate r < ν dispersion; orientation X ^ a ≈ 10°; pleochroic X colorless, Y and Z light green-yellow; X < Y ≈ Z. EPMA and LA-ICP-MS analyses of seaborgite undermeasured its Li, K, and Na. The empirical formula using Li, Na, and K based on the structure refinement is Li1.00Na5.81K2.19(UO2)(SO4)5(SO3OH)(H2O). Seaborgite is triclinic, P1, a = 5.4511(4), b = 14.4870(12), c = 15.8735(15) Å, α = 76.295(5), β = 81.439(6), γ = 85.511(6)°, V = 1203.07(18) Å3, and Z = 2. The structure (R1 = 0.0377 for 1935 I = 2σI) contains [(UO2)2(SO4)8]4– uranyl-sulfate clusters that are linked into a band by bridging LiO4 tetrahedra. The bands are linked through peripheral SO4 tetrahedra forming a thick heteropolyhedral layer. Channels within the layers contain a K site, while an additional K site, six Na sites, and an SO3OH group occupy the space between the heteropolyhedral layers.


Warta Geologi ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 191-195
Author(s):  
Elvaene James ◽  
◽  
Hennie Fitria W. Soehady Erfen ◽  
Azman A. Ghani ◽  
Angela Vidda Chuwat ◽  
...  

An exposure of agate geode and nodules in Mount Conner, Sabah, provides an essential aspect to the geological formation in Semporna. This paper briefly report results from petrography analyses on the agate geode and nodules and its significance to the volcanic rocks and sedimentary rocks formation in Mount Conner. The geode and nodules can be divided into agate, and nodules and most of them are sub-rounded. Nodules are usually small in size and display brownish colour. It commonly occurs in volcanic rocks (dacite and rhyolite) and contained amygdale filled by secondary mineral such as microcrystalline and macrocystalline quartz. In contrast, sedimentary rocks in Mount Conner contain both nodules and geodes, which nodules shows similar characteristic with nodules in volcanic rocks and geodes contained empty vesicles or spaces surrounded by colourless to milky white quartz crystals. Both geode and nodules exhibit conchoidal fracture, while geode shows vesicle features and nodules in volcanic rocks show amygdale texture. The formation of geodes and nodules in Mount Conner might as result of precipitation under low temperature from hydrothermal solution.


2020 ◽  
Vol 84 (5) ◽  
pp. 785-790
Author(s):  
Ting Li ◽  
Ziying Li ◽  
Guang Fan ◽  
Honghai Fan ◽  
Jun Zhong ◽  
...  

ABSTRACTA new mineral species of the pyrochlore supergroup, hydroxyplumbopyrochlore (IMA2018-145), (Pb1.5,□0.5)Nb2O6(OH), has been discovered in the Jabal Sayid peralkaline granitic complex of the Arabian Shield, Saudi Arabia. It is associated with quartz, microcline, ‘biotite’, rutile, zircon, calcite, rhodochrosite, columbite-(Fe), goethite, thorite, bastnäsite-(Ce), xenotime-(Y), samarskite-(Y), euxenite-(Y), hydropyrochlore and fluornatropyrochlore. Hydroxyplumbopyrochlore usually shows euhedral octahedra, slightly rhombic dodecahedra and cubes or their combination (0.01–0.06 mm). The mineral is pale yellow to pale brown, transparent with white streak, and has adamantine to transparent lustre. It is brittle with conchoidal fracture. No cleavage or parting are observed. It is isotropic and non-fluorescent. The average microhardness is 463.4 kg mm–2. The calculated density is 6.474 g cm–3.Hydroxyplumbopyrochlore belongs to the cubic crystal system and exhibits the space group Fd$\bar{3}$m with unit-cell parameters a = 10.5456(6) Å, V = 1172.8(2) Å3 and Z = 8. Electron microprobe analysis gave (6-point average composition, wt.%): CaO 0.32, SrO 0.16, FeO 0.17, Ce2O3 0.07, Pr2O3 0.02, PbO 51.69, Nb2O5 40.06, SiO2 0.05, TiO2 1.68, Ta2O5 4.74, H2Ocalc 0.95, total 99.90, yielding the empirical formula (Pb1.34Ca0.03Fe0.01Sr0.01□0.61)Σ2(Nb1.75Ti0.12Ta0.12Si0.01)Σ2O6(OH0.53O0.08□0.39)Σ1, where □ = vacancy. The Raman spectrum of hydroxyplumbopyrochlore contains the characteristic bands of O–H vibrations and no bands for H2O vibrations.


2020 ◽  
Vol 58 (5) ◽  
pp. 549-562
Author(s):  
Anatoly V. Kasatkin ◽  
Fabrizio Nestola ◽  
Radek Škoda ◽  
Nikita V. Chukanov ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT Hingganite-(Nd), ideally Nd2□Be2Si2O8(OH)2, is a new gadolinite group, gadolinite supergroup mineral discovered at Zagi Mountain, near Kafoor Dheri, about 4 km S of Warsak and 30 km NW of Peshawar, Khyber Pakhtunkhwa Province, Pakistan. The new mineral forms zones measuring up to 1 × 1 mm2 in loose prismatic crystals up to 0.7 cm long, where it is intergrown with hingganite-(Y). Other associated minerals include aegirine, microcline, fergusonite-(Y), and zircon. Hingganite-(Nd) is dark greenish-brown, transparent, has vitreous luster and a white streak. It is brittle and has a conchoidal fracture. No cleavage or parting are observed. Mohs hardness is 5½–6. Dcalc. = 4.690 g/cm3. Hingganite-(Nd) is non-pleochroic, optically biaxial (+), α = 1.746(5), β = 1.766(5), γ = 1.792(6) (589 nm). 2Vmeas. = 80(7)°; 2Vcalc. = 84°. Dispersion of optical axes was not observed. The average chemical composition of hingganite-(Nd) is as follows (wt.%; electron microprobe, BeO, B2O3, and Lu2O3 content measured by LA-ICP-MS; H2O calculated by stoichiometry): BeO 9.64, CaO 0.45, MnO 0.10, FeO 3.03, B2O3 0.42, Y2O3 8.75, La2O3 1.63, Ce2O3 12.89, Pr2O3 3.09, Nd2O3 16.90, Sm2O3 5.97, Eu2O3 1.08, Gd2O3 5.15, Tb2O3 0.50, Dy2O3 2.50, Ho2O3 0.33, Er2O3 0.84, Tm2O3 0.10, Yb2O3 0.44, Lu2O3 0.04, ThO2 0.13, SiO2 23.55, H2O 2.72, total 100.25. The empirical formula calculated on the basis of 2 Si apfu is (Nd0.513Ce0.401Y0.395Sm0.175Gd0.145Pr0.096Dy0.068La0.051Ca0.041Eu0.031Er0.022Tb0.014Yb0.011Ho0.009Tm0.003Th0.003Lu0.001)Σ1.979(□0.778Fe2+0.215Mn0.007)Σ1.000(Be1.967B0.062)Σ2.029Si2O8.46(OH)1.54. Hingganite-(Nd) is monoclinic, space group P21/c with a = 4.77193(15), b = 7.6422(2), c = 9.9299(2) Å, β = 89.851(2)°, V = 362.123(14) Å3, and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.105 (95) (011), 4.959 (56) (002), 4.773 (100) (100), 3.462 (58) (102), 3.122 , 3.028 (61) (013), 2.864 (87) (121), 2.573 (89) (113). The crystal structure of hingganite-(Nd) was refined from single-crystal X-ray diffraction data to R = 0.034 for 2007 unique reflections with I > 2σ(I). The new mineral is named as an analogue of hingganite-(Y), hingganite-(Yb), and hingganite-(Ce), but with Nd dominant among the rare earth elements.


2020 ◽  
Vol 32 (3) ◽  
pp. 373-385
Author(s):  
Anthony R. Kampf ◽  
Barbara P. Nash ◽  
Jakub Plášil ◽  
Jason B. Smith ◽  
Mark N. Feinglos

Abstract. Niasite (IMA2019-105) and johanngeorgenstadtite (IMA2019-122) are Ni4.52+(AsO4)3 dimorphs from Johanngeorgenstadt, Saxony, Germany. The two new minerals occur in association with one another and with aerugite, bunsenite, quartz, rooseveltite and xanthiosite. This mineral assemblage is apparently secondary in origin and most likely formed from the breakdown of primary nickeline under dry (low relative humidity) and oxidizing (high oxygen fugacity) conditions. Both minerals are found in sugary aggregates of irregular, rounded grains or short prisms. Niasite properties are as follows: colour violet-red to red-orange; streak pale pink; transparent; resinous to subadamantine lustre; brittle tenacity; no cleavage; conchoidal fracture; Mohs hardness ∼4; densitycalc 5.222 g cm−3; optically uniaxial (–), ω 1.925(5) and ε 1.855(5) (white light), pleochroism O beige, E deep pink (O<E). Johanngeorgenstadtite properties are as follows: colour pink-orange; streak pale pink; transparent; resinous to subadamantine lustre; brittle tenacity; {010}, {110} and {1−10} cleavage; curved and stepped fracture; Mohs hardness ∼5; densitycalc 4.801 g cm−3; optically biaxial (–), α 1.83(1), β 1.86(1), γ 1.88(1) (white light), 2Vmeas 78(1)∘, pleochroism X violet, Y light olive, Z yellow (X>Y>Z). Raman spectra of both minerals are dominated by the stretching vibrations of AsO4 tetrahedra and confirm that both minerals are anhydrous. Electron microprobe analyses give the empirical formulas (Ni3.692+Co0.662+Fe0.032+Al0.02Na0.02Cu0.012+)Σ4.43As3.03O12 and (Ni3.562+Co0.752+Cu0.132+)Σ4.44As3.02O12 for niasite and johanngeorgenstadtite, respectively. Niasite is tetragonal, I4¯2d, with a=6.8046(8), c=18.6190(13) Å, V=862.1(2) Å3 and Z=4. Johanngeorgenstadtite is monoclinic, C2∕c, with a=11.933(3), b=12.753(3), c=6.6956(17) Å, β=113.302(8)∘, V=935.9(4) Å3 and Z=4. The structure of niasite (R1=0.0226 for 471 Io>2σI reflections) is the same as that of jeffbenite, as well as those of several garnet-like synthetic phases. Johanngeorgenstadtite (R1=0.0375 for 355 Io>2σI reflections) has an unprotonated alluaudite structure.


2020 ◽  
Vol 32 (3) ◽  
pp. 355-365
Author(s):  
Cristiano Ferraris ◽  
Isabella Pignatelli ◽  
Fernando Cámara ◽  
Giancarlo Parodi ◽  
Sylvain Pont ◽  
...  

Abstract. Laurentthomasite, ideally Mg2K(Be2Al)Si12O30, is a new milarite-group member found within quartz-syenite pegmatites from the Ihorombe region, Fianarantsoa Province, Madagascar. It occurs as euhedral {0001} hexagonal crystals, maximum 15 mm large and 5 mm thick. The crystals show a very strong dichroism with cobalt blue and green-yellow colours when observed along [0001] and [1000], respectively. The mineral is transparent, uniaxial (+) and its lustre is vitreous. The hardness is about 6 (Mohs scale), showing a poor {0001} cleavage, irregular to conchoidal fracture, and a measured density of 2.67(8) g cm−3. Laurentthomasite is hexagonal, space group P6/mcc (no. 192), with a=9.95343(6) Å, c=14.15583(8) Å, V=1214.54(1) Å3 and Z=2. The strongest nine lines in the X-ray powder diffraction pattern [d in Å – (I) – hkl] are 3.171 – (10) – 211, 4.064 – (8) – 112, 2.732 – (8) – 204, 4.965 – (6) – 110, 2.732 – (4) – 204, 3.533 – (3) – 004, 7.055 – (2) – 002, 4.302 – (2) – 200 and 3.675 – (2) – 202. Chemical analyses by electron microprobe and several spectroscopies (inductively coupled plasma, ICP; optical emission, OES; mass, MS; and Mössbauer) give the following empirical formula based on 30 anions per formula unit: (Mg0.86 Sc0.54 Fe0.352+ Mn0.26)∑=2.01(K0.89 Na0.05 Y0.02 Ca0.01 Ba0.01)∑=0.98[(Be2.35 Al0.50 Mg0.11 Fe0.033+)∑=2.99(Si11.90 Al0.10)O30]; the simplified formula is (Mg, Sc)2(K, Na)[(Be, Al, Mg)3(Si, Al)12O30]. The crystal structure was refined to an R index of 1.89 % based on 430 reflections with Io > 2σ(I) collected on a four-circle diffractometer with CuKα radiation. By comparison with the general formula of the milarite group, A2B2C[T(2)3T(1)12O30](H2O) x (0<x<n, with n<2 pfu, per formula unit), the laurentthomasite structure consists of a beryllo-alumino-silicate framework in which the T(1) site is occupied by Si and minor Al and forms [Si12O30] cages linked by the T(2) site mainly occupied by (Be + Al). The A and C sites occur in the interstices of the framework while the B site is vacant. The origin of the strong dichroism is related to a charge transfer process between Fe2+ and Fe3+ in octahedral A sites and tetrahedral T(2) sites, respectively.


2020 ◽  
Vol 58 (3) ◽  
pp. 381-394
Author(s):  
Leonid A. Pautov ◽  
Mirak A. Mirakov ◽  
Fernando Cámara ◽  
Elena Sokolova ◽  
Frank C. Hawthorne ◽  
...  

ABSTRACT Badakhshanite-(Y), ideally Y2Mn4Al(Si2B7BeO24), is a tetrahedral sheet-structure mineral found in the Dorozhny (Road) miarolitic granitic pegmatite within the Kukurt pegmatite field 45 km E of Murghab, Eastern Pamir, Gorno-Badakhshan Autonomous Oblast, Tajikistan. Badakhshanite-(Y) occurs in medium- to coarse-grained non-graphic albite-microcline-quartz pegmatites in close association with smoky quartz, Sc-bearing spessartine, Sc-bearing tusionite, and schorl. It often grows together with Sc-bearing tusionite and occurs as single columnar crystals ranging from 50 to 400 μm in length, as inclusions in spessartine and tourmaline, and rarely as crystals in blebs along boundaries between garnet, tourmaline, and quartz. Badakhshanite-(Y) is yellow brown and has a white streak and a vitreous luster. It is brittle, with a conchoidal fracture, Mohs hardness of 6.5–7, and calculated density of 4.41 g/cm. In thin section it is transparent and pale yellow, non-pleochroic, biaxial (–), with α = 1.805(2), βcalc = 1.827, γ = 1.835(3) (λ = 590 nm); 2V (meas.) = –60(10)°. Dispersion is weak, r &gt; v. Extinction is straight, elongation is negative. FTIR spectra show the absence of (OH) and H2O groups. Chemical analysis by electron microprobe using WDS (6 points), SIMS, and ICP-OES for B and Be gave SiO2 11.96, ThO2 0.12, Sm2O3 0.17, Gd2O3 0.30, Tb2O3 0.10, Dy2O3 0.73, Ho2O3 0.19, Er2O3 1.34, Tm2O3 0.54, Yb2O3 8.82, Lu2O3 2.32, Y2O3 16.60, Sc2O3 1.57, Al2O3 3.06, B2O3 22.06, FeO 0.94, MnO 23.33, CaO 0.58, BeO 2.84, total 97.57 wt.%.The empirical formula based on 24 O apfu is (Y1.21REE0.78Th0.01)Σ2(Mn3.47Y0.34Ca0.11Fe2+0.08)Σ4(Al0.63Sc0.24Fe2+0.06□0.07)Σ1[(Si2.10B6.69Be1.20)Σ9.99O24], where REE = (Yb0.47Lu0.12Dy0.04Er0.07Tm0.03 Ho0.01Gd0.02Sm0.01Tb0.01)Σ0.78. Badakhshanite-(Y) is orthorhombic, space group Pnma, a 12.852(1), b 4.5848(5), c 12.8539(8) Å, V 757.38(7) Å3, Z = 2. The crystal structure was refined to R1 = 4.31% based on 1431 unique [F &gt; 4σF] reflections. In the crystal structure of badakhshanite-(Y), a layer of tetrahedra parallel to (010) is composed of four different tetrahedrally coordinated sites: Si, B(1), B(2), and T (&lt;Si–O&gt; = 1.623 Å, &lt;B(1)–O&gt; = 1.485 Å, &lt;B(2)–O&gt; = 1.479 Å, &lt;T–O&gt; = 1.557 Å), which form four-, five-, and eight-membered rings, having the composition (Si2B7BeO24). Between the sheets of tetrahedra, there are three cation sites: M(1), M(2), and M(3) (&lt;M(1)–O&gt; = 2.346 Å, &lt;M(2)–O&gt; = 2.356 Å, &lt;M(3)–O&gt; = 2.016 Å) occupied by Y(REE), Mn2+(Y, Ca, Fe2+), and Al(Sc), respectively. The M(1,2) sites ideally give Y2Mn4apfu; the M(3) site ideally gives Al apfu. Badakhshanite-(Y) is an Al- and Be-analogue of perettiite-(Y).


2020 ◽  
Vol 58 (3) ◽  
pp. 403-410
Author(s):  
Anthony R. Kampf ◽  
Robert M. Housley ◽  
George R. Rossman ◽  
Hexiong Yang ◽  
Robert T. Downs

ABSTRACT Adanite, Pb2(Te4+O3)(SO4), is a new oxidation-zone mineral from the North Star mine, Tintic district, Juab County, Utah, and from Tombstone, Cochise County, Arizona, USA. The characterization of the species is based principally on North-Star holotype material. Crystals are beige wedge-shaped blades, up to about 1 mm in length, in cockscomb intergrowths. The mineral is transparent with adamantine luster, white streak, Mohs hardness 2½, brittle tenacity, conchoidal fracture, and no cleavage. The calculated density is 6.385 g/cm3. Adanite is biaxial (–), with α = 1.90(1), β = 2.04(calc), γ = 2.08(calc), 2V(meas) = 54(1)°. The Raman spectrum is consistent with the presence of tellurite and sulfate groups and the absence of OH and H2O. Electron-microprobe analyses gave the empirical formula Pb1.89Sb3+0.02Te4+0.98S6+1.04Cl0.02O6.98. The mineral is monoclinic, space group P21/n, with a = 7.3830(3), b = 10.7545(5), c = 9.3517(7) Å, β = 111.500(8)°, V = 690.86(7) Å3, and Z = 4. The four strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 6.744(47), 3.454(80), 3.301(100), and 3.048(73). The structure (R1 = 0.022 for 1906 I &gt; 2σI reflections) contains Te4+O3 pyramids that are joined by short (strong) Pb–O bonds to form sheets. Interlayer SO4 groups link the sheets via long Pb–O and Te–O bonds.


Sign in / Sign up

Export Citation Format

Share Document