scholarly journals Stroboscopic detection of nuclear resonance in an arbitrary scattering channel

2015 ◽  
Vol 22 (2) ◽  
pp. 385-392 ◽  
Author(s):  
L. Deák ◽  
L. Bottyán ◽  
R. Callens ◽  
R. Coussement ◽  
M. Major ◽  
...  

The theory of heterodyne/stroboscopic detection of nuclear resonance scattering is developed, starting from the total scattering matrix as a product of the matrix of the reference sample and the sample under study. This general approach holds for all dynamical scattering channels. In the forward channel, which has been discussed in detail in the literature, the electronic scattering manifests itself only in an energy-independent diminution of the scattered intensity. In all other channels, complex resonance line shapes of the heterodyne/stroboscopic spectra are encountered, as a result of the interference of electronic and nuclear scattering. The grazing-incidence case will be evaluated and described in detail. Experimental data of classical X-ray reflectivity and their stroboscopically detected resonant counterpart spectra on the [natFe/57Fe]10isotope periodic multilayer and antiferromagnetic [57Fe/Cr]20superlattice are fitted simultaneously.

1984 ◽  
Vol 86 ◽  
pp. 124-124
Author(s):  
T.J. McIlrath ◽  
V. Kaufman ◽  
J. Sugar ◽  
W.T. Hill ◽  
D. Cooper

Rapid ionization of Cs vapor in a heat pipe at 0.05 torr was achieved by pumping the 6s 2S½ – 7p 2P½ transition (f=0.007)1 with a flash-pumped dye laser at 4593.2A and I MW power output. Photoabsorptian initiated at the end of the laser pulse(≃ 0.5/s) showed the 5p5ns and nd series below and above the 5p52P3/2 threshold at 535.4A. Broad Beutler - Fano resonances appeared in the d series above threshold. The spectrum was recorded photographically on a 10.7m grazing incidence spectrograph using a continuum background generated by a BRV high-voltage spark source with a uranium anode. We will compare the line-shapes and the quantum defect (Lu-Fano2) plot with the predictions of a relativistic random phase calculation.


1991 ◽  
Vol 69 (8-9) ◽  
pp. 1146-1153 ◽  
Author(s):  
I. D. Lockerbie ◽  
W. S. C. Brooks ◽  
P. How ◽  
E. J. Llewellyn

A Monte-Carlo simulation of single-line resonant scattering in a rarefied gas is presented and the technique is applied to the interpretation of a rocket-borne resonance-lamp experiment. The simulation examines the case of an emitting and absorbing gas at the same temperature for a number of detector and source configurations. The distance from the last scatter point, the angular distribution of the detected scattered photons, and the line shape formed by the scattered photons, at the detector, are evaluated for these different configurations. The simulation results suggest that the scattering of the detected photon occurs very near to the rocket, and not necessarily in the traditional scattering region at the intersection of the detector and emitter normals. It is observed that multiple scattering plays an important role in the number of photons detected and that the apparent gas temperature, as exhibited by the line shapes of the scattered photons, is dependent upon the configuration of the experiment. The simulation results suggest that, for a resonance-scattering experiment to measure constituent concentrations, the experimental design must optimize the return signal and minimize the effect of multiple scattering. The results also suggest that the calibration procedures for resonance-scattering experiments must be made with a physical configuration and environment that is identical to that expected in the rocket flight.


1977 ◽  
Vol 37 (1) ◽  
pp. 369-373 ◽  
Author(s):  
B. J. Thomas ◽  
D. Vartsky ◽  
D. J. Hawkes ◽  
J. H. Fremlin

Sign in / Sign up

Export Citation Format

Share Document