scholarly journals High-Resolution Photoabsorption Spectrum of Cs+ (5p61So + 5p5ns, nd) Between 504A and 600A using a Laser Ionized Cs Vapor Column

1984 ◽  
Vol 86 ◽  
pp. 124-124
Author(s):  
T.J. McIlrath ◽  
V. Kaufman ◽  
J. Sugar ◽  
W.T. Hill ◽  
D. Cooper

Rapid ionization of Cs vapor in a heat pipe at 0.05 torr was achieved by pumping the 6s 2S½ – 7p 2P½ transition (f=0.007)1 with a flash-pumped dye laser at 4593.2A and I MW power output. Photoabsorptian initiated at the end of the laser pulse(≃ 0.5/s) showed the 5p5ns and nd series below and above the 5p52P3/2 threshold at 535.4A. Broad Beutler - Fano resonances appeared in the d series above threshold. The spectrum was recorded photographically on a 10.7m grazing incidence spectrograph using a continuum background generated by a BRV high-voltage spark source with a uranium anode. We will compare the line-shapes and the quantum defect (Lu-Fano2) plot with the predictions of a relativistic random phase calculation.

Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Benjamin M. Siegel

The potential advantages of high voltage electron microscopy for extending the limits of resolution and contrast in imaging low contrast objects, such as biomolecular specimens, is very great. The results of computations will be presented showing that at accelerating voltages of 500-1000 kV it should be possible to achieve spacial resolutions of 1 to 1.5 Å and using phase contrast imaging achieve adequate image contrast to observe single atoms of low atomic number.The practical problems associated with the design and utilization of the high voltage instrument are, optimistically, within the range of competence of the state of the art. However, there are some extremely important and critical areas to be systematically investigated before we have achieved this competence. The basic electron optics of the column required is well understood, but before the full potential of an instrument capable of resolutions of better than 1.5 Å are realized some very careful development work will be required. Of great importance for the actual achievement of high resolution with a high voltage electron microscope is the fundamental limitation set by the characteristics of the high voltage electron beam that can be obtained from the accelerator column.


Author(s):  
David J. Smith

The initial attractions of the high voltage electron microscope (HVEM) stemmed mainly from the possibility of considerable increases in electron penetration through thick specimens compared with conventional 100KV microscopes, although the potential improvement in resolution associated with the decrease in election wavelength had been fully appreciated for many years (eg. Cosslett, 1946)1, even if not realizable in practice. Subsequent technological advances enabled the performance of lower voltage machines to be brought closer to the theoretical limit, to be followed in turn by more recent projects which have been successful, eventually, in achieving even higher resolution with dedicated higher voltage instruments such as those at Kyoto (500KV)2, Munich (400KV)3, Ibaraki (1250KV)4 and Cambridge (600KV)5. It does not necessarily follow however that the performance of journal high voltage microscopes can be easily upgraded, retrospectively, to the same level, as will be discussed in detail below.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhicheng Xiao ◽  
Andrea Alù

Abstract Fano resonances feature an asymmetric lineshape with controllable linewidth, stemming from the interplay between bright and dark resonances. They provide efficient opportunities to shape the scattering lineshape, but they usually lack flexibility and tunability and are hindered by loss in passive systems. Here, we explore a hybrid parity-time (PT) and anti-parity-time (APT) symmetric system supporting unitary scattering features with highly tunable Fano resonances. The PT-APT-symmetric system can be envisioned in nanophotonic and microwave circuit implementations, allowing for real-time control of the scattering lineshape and its underlying singularities. Our study shows the opportunities enabled by non-Hermitian platforms to control scattering lineshapes for a plethora of photonic, electronic, and quantum systems, with potential for high-resolution imaging, switching, sensing, and multiplexing.


2021 ◽  
Vol 13 (12) ◽  
pp. 2326
Author(s):  
Xiaoyong Li ◽  
Xueru Bai ◽  
Feng Zhou

A deep-learning architecture, dubbed as the 2D-ADMM-Net (2D-ADN), is proposed in this article. It provides effective high-resolution 2D inverse synthetic aperture radar (ISAR) imaging under scenarios of low SNRs and incomplete data, by combining model-based sparse reconstruction and data-driven deep learning. Firstly, mapping from ISAR images to their corresponding echoes in the wavenumber domain is derived. Then, a 2D alternating direction method of multipliers (ADMM) is unrolled and generalized to a deep network, where all adjustable parameters in the reconstruction layers, nonlinear transform layers, and multiplier update layers are learned by an end-to-end training through back-propagation. Since the optimal parameters of each layer are learned separately, 2D-ADN exhibits more representation flexibility and preferable reconstruction performance than model-driven methods. Simultaneously, it is able to better facilitate ISAR imaging with limited training samples than data-driven methods owing to its simple structure and small number of adjustable parameters. Additionally, benefiting from the good performance of 2D-ADN, a random phase error estimation method is proposed, through which well-focused imaging can be acquired. It is demonstrated by experiments that although trained by only a few simulated images, the 2D-ADN shows good adaptability to measured data and favorable imaging results with a clear background can be obtained in a short time.


2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


2013 ◽  
Vol 380-384 ◽  
pp. 3213-3216
Author(s):  
Hai Yan Wang ◽  
Duan Lei Yuan ◽  
Chen Xu Niu ◽  
Hua Jun Dong

In this paper, mainly for the problem that high voltage circuit breaker closing at the random phase can bring hard harmfulness to the power system. We design the 35kV SF6-Phase Control circuit breaker can control speed smartly, and opens or closes with phase selection, which is equipped with the magnetic actuator. In the article, the static and transient simulation analysis which includes the load force, and carried out prototype trial and test validation. At last, the results of simulation and test is given.


Sign in / Sign up

Export Citation Format

Share Document