scholarly journals Using cryo-electron microscopy maps for X-ray structure determination

IUCrJ ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 382-389 ◽  
Author(s):  
Lingxiao Zeng ◽  
Wei Ding ◽  
Quan Hao

X-ray crystallography and cryo-electron microscopy (cryo-EM) are complementary techniques for structure determination. Crystallography usually reveals more detailed information, while cryo-EM is an extremely useful technique for studying large-sized macromolecules. As the gap between the resolution of crystallography and cryo-EM data narrows, the cryo-EM map of a macromolecule could serve as an initial model to solve the phase problem of crystal diffraction for high-resolution structure determination. FSEARCH is a procedure to utilize the low-resolution molecular shape for crystallographic phasing. The IPCAS (Iterative Protein Crystal structure Automatic Solution) pipeline is an automatic direct-methods-aided dual-space iterative phasing and model-building procedure. When only an electron-density map is available as the starting point, IPCAS is capable of generating a completed model from the phases of the input map automatically, without the requirement of an initial model. In this study, a hybrid method integrating X-ray crystallography with cryo-EM to help with structure determination is presented. With a cryo-EM map as the starting point, the workflow of the method involves three steps. (1) Cryo-EM map replacement: FSEARCH is utilized to find the correct translation and orientation of the cryo-EM map in the crystallographic unit cell and generates the initial low-resolution map. (2) Phase extension: the phases calculated from the correctly placed cryo-EM map are extended to high-resolution X-ray data by non-crystallographic symmetry averaging with phenix.resolve. (3) Model building: IPCAS is used to generate an initial model using the phase-extended map and perform model completion by iteration. Four cases (the lowest cryo-EM map resolution being 6.9 Å) have been tested for the general applicability of the hybrid method, and almost complete models have been generated for all test cases with reasonable R work/R free. The hybrid method therefore provides an automated tool for X-ray structure determination using a cryo-EM map as the starting point.

2020 ◽  
Vol 76 (1) ◽  
pp. 63-72
Author(s):  
Lingxiao Zeng ◽  
Wei Ding ◽  
Quan Hao

The combination of cryo-electron microscopy (cryo-EM) and X-ray crystallography reflects an important trend in structural biology. In a previously published study, a hybrid method for the determination of X-ray structures using initial phases provided by the corresponding parts of cryo-EM maps was presented. However, if the target structure of X-ray crystallography is not identical but homologous to the corresponding molecular model of the cryo-EM map, then the decrease in the accuracy of the starting phases makes the whole process more difficult. Here, a modified hybrid method is presented to handle such cases. The whole process includes three steps: cryo-EM map replacement, phase extension by NCS averaging and dual-space iterative model building. When the resolution gap between the cryo-EM and X-ray crystallographic data is large and the sequence identity is low, an intermediate stage of model building is necessary. Six test cases have been studied with sequence identity between the corresponding molecules in the cryo-EM and X-ray structures ranging from 34 to 52% and with sequence similarity ranging from 86 to 91%. This hybrid method consistently produced models with reasonable R work and R free values which agree well with the previously determined X-ray structures for all test cases, thus indicating the general applicability of the method for X-ray structure determination of homologues using cryo-EM maps as a starting point.


2019 ◽  
Vol 20 (17) ◽  
pp. 4186 ◽  
Author(s):  
Emeka Nwanochie ◽  
Vladimir N. Uversky

Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.


Author(s):  
Catherine Vénien-Bryan ◽  
Zhuolun Li ◽  
Laurent Vuillard ◽  
Jean Albert Boutin

The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.


Author(s):  
Anshul Assaiya ◽  
Ananth Prasad Burada ◽  
Surbhi Dhingra ◽  
Janesh Kumar

Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.


2020 ◽  
Vol 42 (2) ◽  
pp. 40-44
Author(s):  
Clive R. Bagshaw

For a liquid flowing through a tube at constant velocity, the distance from the point of origin can provide a measure of the reaction time. This concept of continuous flow, first applied over a century ago to follow biochemical reactions by absorption spectroscopy, is now being used in conjunction with high-resolution structural methods such as X-ray crystallography and cryo-electron microscopy. The resultant kinetic information is crucial to understanding the mechanism.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document