scholarly journals Site preference and tetragonal distortion in palladium-rich Heusler alloys

IUCrJ ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 218-225 ◽  
Author(s):  
Mengxin Wu ◽  
Yilin Han ◽  
A. Bouhemadou ◽  
Zhenxiang Cheng ◽  
R. Khenata ◽  
...  

In this work, two kinds of competition between different Heusler structure types are considered, one is the competition between XA and L21 structures based on the cubic system of full-Heusler alloys, Pd2 YZ (Y = Co, Fe, Mn; Z = B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb). Most alloys prefer the L21 structure; that is, Pd atoms tend to occupy the a (0, 0, 0) and c (0.5, 0.5, 0.5) Wyckoff sites, the Y atom is generally located at site b (0.25, 0.25, 0.25), and the main group element Z has a preference for site d (0.75, 0.75, 0.75), meeting the well known site-preference rule. The difference between these two cubic structures in terms of their magnetic and electronic properties is illustrated further by their phonon dispersion and density-of-states curves. The second type of competition that was subjected to systematic study was the competitive mechanism between the L21 cubic system and its L10 tetragonal system. A series of potential tetragonal distortions in cubic full-Heusler alloys (Pd2 YZ) have been predicted in this work. The valley-and-peak structure at, or in the vicinity of, the Fermi level in both spin channels is mainly attributed to the tetragonal ground states according to the density-of-states analysis. ΔE M is defined as the difference between the most stable energy values of the cubic and tetragonal states; the larger the value, the easier the occurrence of tetragonal distortion, and the corresponding tetragonal structure is stable. Compared with the ΔE M values of classic Mn2-based tetragonal Heusler alloys, the ΔE M values of most Pd2CoZ alloys in this study indicate that they can overcome the energy barriers between cubic and tetragonal states, and possess possible tetragonal transformations. The uniform strain has also been taken into consideration to further investigate the tetragonal distortion of these alloys in detail. This work aims to provide guidance for researchers to further explore and study new magnetic functional tetragonal materials among the full-Heusler alloys.

IUCrJ ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 465-472 ◽  
Author(s):  
Yilin Han ◽  
Mengxin Wu ◽  
Yu Feng ◽  
Zhenxiang Cheng ◽  
Tingting Lin ◽  
...  

In this work, a series of all-d-metal Heusler alloys, X 2 − x Mn1 + x V (X = Pd, Ni, Pt, Ag, Au, Ir, Co; x; = 1, 0), were predicted by first principles. The series can be roughly divided into two categories: XMn2V (Mn-rich type) and X 2MnV (Mn-poor type). Using optimized structural analysis, it is shown that the ground state of these all-d-metal Heusler alloys does not fully meet the site-preference rule for classic full-Heusler alloys. All the Mn-rich type alloys tend to form the L21 structure, where the two Mn atoms prefer to occupy the A (0, 0, 0) and C (0.5, 0.5, 0.5) Wyckoff sites, whereas for the Mn-poor-type alloys, some are stable with XA structures and some are not. The c/a ratio was also changed while maintaining the volume the same as in the cubic state to investigate the possible tetragonal transformation of these alloys. The Mn-rich Heusler alloys have strong cubic resistance; however, all the Mn-poor alloys prefer to have a tetragonal state instead of a cubic phase through tetragonal transformations. The origin of the tetragonal state and the competition between the cubic and tetragonal phases in Mn-poor alloys are discussed in detail. Results show that broader and shallower density-of-states structures at or in the vicinity of the Fermi level lower the total energy and stabilize the tetragonal phases of X 2MnV (X = Pd, Ni, Pt, Ag, Au, Ir, Co). Furthermore, the lack of virtual frequency in the phonon spectra confirms the stability of the tetragonal states of these Mn-poor all-d-metal Heusler alloys. This work provides relevant experimental guidance in the search for possible martensitic Heusler alloys in all-d-metal materials with less Mn and new spintronic and magnetic intelligent materials among all-d-metal Heusler alloys.


2021 ◽  
Vol 517 ◽  
pp. 167379
Author(s):  
Xingzhe Du ◽  
Yajiu Zhang ◽  
Zhuhong Liu ◽  
Zhigang Wu ◽  
Shifeng Xu ◽  
...  

2019 ◽  
Vol 32 (8) ◽  
pp. 2479-2488 ◽  
Author(s):  
Ahmad Asadi Mohammad Abadi ◽  
Ghasem Forozani ◽  
Seyyed Mahdy Baizaee ◽  
Abdolrasoul Gharaati

Vacuum ◽  
2021 ◽  
pp. 110418
Author(s):  
Yutong Li ◽  
Jingchuan Zhu ◽  
Ramesh Paudel ◽  
Jingtao Huang ◽  
Fei Zhou

2022 ◽  
pp. 1-1
Author(s):  
Olga N. Miroshkina ◽  
Vladimir V. Sokolovskiy ◽  
Vasiliy D. Buchelnikov ◽  
Markus E. Gruner

Sign in / Sign up

Export Citation Format

Share Document