3D electron diffraction techniques

Author(s):  
Mauro Gemmi ◽  
Arianna E. Lanza

3D electron diffraction is an emerging technique for the structural analysis of nanocrystals. The challenges that 3D electron diffraction has to face for providing reliable data for structure solution and the different ways of overcoming these challenges are described. The route from zone axis patterns towards 3D electron diffraction techniques such as precession-assisted electron diffraction tomography, rotation electron diffraction and continuous rotation is also discussed. Finally, the advantages of the new hybrid detectors with high sensitivity and fast readout are demonstrated with a proof of concept experiment of continuous rotation electron diffraction on a natrolite nanocrystal.

2021 ◽  
Author(s):  
Meng Ge ◽  
Taimin Yang ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
...  

<p>Three-dimensional electron diffraction (3DED) has been proven as an effective and accurate method for structure determination of nano-sized crystals. In the past decade, the crystal structures of various new complex metal-organic frameworks (MOFs) have been revealed by 3DED, which has been the key to understand their properties. However, due to the design of transmission electron microscopes (TEMs), one drawback of 3DED experiments is the limited tilt range of goniometer, which often leads to incomplete 3DED data, particularly when the crystal symmetry is low. This drawback can be overcome by high throughput data collection using continuous rotation electron diffraction (cRED), where data from a large number of crystals can be collected and merged. Here, we investigate the effects of improving completeness on structural analysis of MOFs. We use ZIF-EC1, a zeolitic imidazolate framework (ZIF), as an example. ZIF-EC1 crystallizes in a monoclinic system with a plate-like morphology. cRED data of ZIF-EC1 with different completeness and resolution were analyzed. The data completeness increased to 92.0% by merging ten datasets. Although the structures could be solved from individual datasets with a completeness as low as 44.5% and refined to a high precession (better than 0.04 Å), we demonstrate that a high data completeness could improve the structural model, especially on the electrostatic potential map. We further discuss the strategy adopted during data merging. We also show that ZIF-EC1 doped with cobalt can act as an efficient electrocatalyst for oxygen reduction reaction. </p>


2014 ◽  
Vol 20 (S3) ◽  
pp. 596-597
Author(s):  
Peter Oleynikov ◽  
Yanhang Ma ◽  
Nobuhisa Fujita ◽  
Javier Garcia-Garcia ◽  
Kyung Byung Yoon ◽  
...  

CrystEngComm ◽  
2020 ◽  
Vol 22 (43) ◽  
pp. 7490-7499
Author(s):  
Grahame R. Woollam ◽  
Partha P. Das ◽  
Enrico Mugnaioli ◽  
Iryna Andrusenko ◽  
Athanassios S. Galanis ◽  
...  

Coupling 3D electron diffraction and density functional theory provided the metastable pharmaceutical crystal structure within nanometre range, under ambient conditions.


IUCrJ ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Edward T. Broadhurst ◽  
Hongyi Xu ◽  
Max T. B. Clabbers ◽  
Molly Lightowler ◽  
Fabio Nudelman ◽  
...  

3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order β < α < γ. The least stable β polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some β and one crystallite of the γ polymorph were also observed.


2020 ◽  
Author(s):  
Zhehao Huang ◽  
meng ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
paolo falcaro ◽  
...  

Many framework materials such as metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are synthesized as polycrystalline powders, which are too small for structure determination by single crystal X-ray diffraction (SCXRD). Here, we show that a three-dimensional (3D) electron diffraction method, namely continuous rotation electron diffraction (cRED), can be used for <i>ab initio</i> structure determination of such materials. As an example, we present a complete structural analysis of a biocomposite, denoted BSA@ZIF-C, where Bovin Serum Albumin (BSA) was encapsulated in a zeolitic imidazolate framework (ZIF). Low electron dose was combined with ultrafast cRED data collection to minimize electron beam damage of the sample. We demonstrate that the atomic structure obtained by cRED is as reliable and accurate as that obtained by single crystal X-ray diffraction. The high accuracy and fast data collection open new opportunities for investigation of cooperative phenomena in framework structures at atomic level.


Author(s):  
Zhehao Huang ◽  
Meng Ge ◽  
Francesco Carraro ◽  
Christian Doonan ◽  
Paolo Falcaro ◽  
...  

Structure determination by continuous rotation electron diffraction can be as feasible and accurate as single crystal X-ray diffraction without the need for large crystals.


Author(s):  
Joke Hadermann ◽  
Artem M. Abakumov

The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.


Sign in / Sign up

Export Citation Format

Share Document