The crystal structure of Cu2GeSe3 and the structure-types of the I2-IV-VI3 family of semiconducting compounds

Author(s):  
Analio Dugarte-Dugarte ◽  
Nahum Ramírez Pineda ◽  
Luis Nieves ◽  
José Antonio Henao ◽  
Graciela Díaz de Delgado ◽  
...  

Almost 50 years after the initial report, the crystal structure of Cu2GeSe3, a I2-IV-VI3 semiconductor, has been revised using modern single-crystal X-ray diffraction data. The structure of this material can be properly described in the monoclinic space group Cc (No. 9) with unit-cell parameters a = 6.7703 (4) Å, b = 11.8624 (5) Å, c = 6.7705 (4) Å, β = 108.512 (6)°, V = 515.62 (5) Å3, Z = 4, rather than in the orthorhombic space group Imm2 (No. 44) with unit-cell parameters a = 11.860 (3), b = 3.960 (1), c = 5.485 (2) Å, V = 257.61 Å3, Z = 2, as originally proposed [Parthé & Garín (1971). Monatsh. Chem. 102, 1197–1208]. Contrary to what was observed in the orthorhombic structure, the distortions of the tetrahedra in the monoclinic structure are consistent with the distortions expected from considerations derived from the bond valence model. A brief revision of the structures reported for the I2-IV-VI3 family of semiconducting compounds (I: Cu, Ag; IV: Si, Ge, Sn; and VI: S, Se, Te) is also presented.

2014 ◽  
Vol 78 (1) ◽  
pp. 29-45 ◽  
Author(s):  
M. D. Welch ◽  
R. H. Mitchell ◽  
A. R. Kampf ◽  
A. R. Chakhmouradian ◽  
D. Smith ◽  
...  

AbstractThe crystal structure of magbasite from the Eldor carbonatite complex, Quebec, Canada, has been determined and indicates that the currently accepted formula should be revised to KBaFe3+Mg7Si8O22(OH)2F6. Magbasite is orthorhombic, space group Cmme (Cmma), with unit-cell parameters a 18.9506(3) Å, b 22.5045(3) Å, c 5.2780(1) Å, V 2250.93(6) Å3 (Z = 4). The structure has been solved and refined to final agreement indices R1 = 0.026, wR2 = 0.052, GooF = 1.116 for a total of 2379 unique reflections, and is a new kind of trellis motif related to amphibole and carpholite topologies. An amphibole-like I-beam ‖(100) of edge-sharing octahedrally-coordinated M(1,2,3) sites, which are filled by Mg, is sandwiched between double-chains of SiO4 tetrahedra ‖c. This I-beam is connected to side-ribbons ‖(010) of edge-sharing (Mg,Fe2+)O4(OH,F)2 and Fe3+O4(OH)2 octahedra to form a tunnelled box or trellis structure very like that of carpholite, for which the I-beams are pyroxene-like. K occupies a tunnel site analogous to the A site of amphibole. Ba occupies a cavity site at the corners where the I-beam and side-ribbon meet, and corresponds to the A site of carpholite. The structural relations between magbasite and carpholite are discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akhmatkhodja N. Yunuskhodjayev ◽  
Shokhista F. Iskandarova ◽  
Vahobjon Kh. Sabirov

Abstract The crystal structure of a copper(II) complex of protonated sildenafil, CuCl3C22H31N6O4S⋅2H2O was studied by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/n with the unit cell parameters a = 15.4292(2), b = 9.06735(12), c = 21.1752(2) Å, V = 2945.48(7) Å3, Z = 4. The Cu atom is coordinated by the sildenafil ligand via the N2 atom of the pyrazolopyrimidine ring and by three chloride anions. Sildenafil is protonated at the methylated N6 atom of the piperazine ring and it is cation ligand with a 1+ charge.


2009 ◽  
Vol 64 (5) ◽  
pp. 565-569 ◽  
Author(s):  
Saied Ghadimi ◽  
Mehrdad Pourayoubi ◽  
Ali Asghar Ebrahimi Valmoozi

Mixed diamidophosphoric acid esters [(CH3)2N][p-H3C-C6H4-O]P(O)X, where X = NH(CH3) (1), NHCH(CH3)2 (2), NHC(CH3)3 (3) and p-H3C-C6H4-NH (4) were synthesized and characterized by 31P, 31P{1H}, 13C, 1H NMR, and IR spectroscopy and mass spectrometry, and single crystal X-ray diffraction analysis for the compounds 3 and 4. Compound 3 crystallizes in the monoclinic, space group P21/c with unit cell parameters a = 9.006(3), b = 16.286(5), c = 10.319(3) A° , β = 99.633(6)◦, V = 1492.2(8) °A3, Z = 4. The final R value is 0.0622 for 2074 reflections [I ≥ 2σ (I)]. Compound 4 crystallizes in the orthorhombic, space group Pna21 with unit cell parameters a = 7.0459(14), b = 20.934(4), c = 10.436(2) ° A, V = 1539.3(5) °A3, Z = 4. The final R value is 0.0530 for 3025 reflections [I ≥ 2σ (I)].


2017 ◽  
Vol 81 (3) ◽  
pp. 611-618
Author(s):  
Mark D. Welch ◽  
J. W. Still ◽  
C. M. Rice ◽  
C. J. Stanley

AbstractThe crystal structure of the first thallium-bearing gold telluride, honeaite Au3TlTe2, is reported and its topological novelty discussed. Honeaite is orthorhombic, space group Pbcm and unit-cell parameters a = 8.9671(4), b = 8.8758(4), c= 7.8419(5) Å, V = 624.14(6) Å3 (Z = 4). Its structure has been refined to R1 = 0.033, wR2 = 0.053, Goof = 1.087. The structure is based upon a corrugated double-sheet comprising two sub-sheets, each composed of six-memberedrings of corner-linked TeAu3 pyramids in which the Te lone pair is stereoactive. Rows of thallium atoms lie in the grooves between sheets and provide the only inter-sheet connectivity via Tl-Au bonds. There is extensive Au-Au bonding linking the two sub-sheets of the double-sheet.The structure is distinct from those of the 1:2 (Au,Ag)-tellurides: calaverite AuTe2, sylvanite AuAgTe4 and krennerite Au3AgTe8, which are based upon sheet structures with no connecting inter-sheet atoms. It also differs fundamentally from the structuresof synthetic phases Ag3TlTe2 and Ag18Tl4Te11, both of which have an analogous stoichiometry. In contrast to the pyramidal TeAu3 group of honeaite and krennerite, Ag does not form the corresponding TeAg3 group in itstellurides.


1997 ◽  
Vol 52 (6) ◽  
pp. 707-710
Author(s):  
M. Jansen ◽  
S. Bzik

Bis[tris(methylamino)silyl]methane (1) and bis[tris(phenylamino)silyl]methane (2) have been synthesized as potential precursors of porous oxygen-free solids by the reaction of bis(trichlorsilyl)methane with methylamine and with lithiated aniline, respectively. Compound 2 was characterized by a crystal structure analysis. It crystallizes in the monoclinic space group P 21 ,/c with the unit cell parameters a= 10.963(2),b= 17.801(2), c = 17.557(2) Å, β = 97.96(2)° and Z = 4 (R1, = 4,4 %, wR2 = 9,8 %, 5950 independent reflections).


2016 ◽  
Vol 31 (3) ◽  
pp. 229-232
Author(s):  
Berenice Torruco Baca ◽  
Luis Felipe del Castillo ◽  
Paula Vera-Cruz ◽  
Rubén A. Toscano ◽  
Joelis Rodríguez-Hernández ◽  
...  

Two different crystalline structures corresponding to a zinc adipate and a zinc succinate were determined combining: X-ray powder and single-crystal diffraction, infrared spectroscopy, thermal analysis, and true densities experiments. The zinc succinate crystal structure was determined by single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space-group Cccm with unit-cell parameters a = 4.792(1) Å, b = 21.204(6) Å, c = 6.691(2) Å, V = 679.8(3) Å3, and Z = 8. Zinc adipate crystal structure was refined from the laboratory X-ray powder diffraction data by the Rietveld method. It crystallizes in the monoclinic space group P2/c with unit-cell parameters, a = 16.2037(17)Å, b = 4.7810(2)Å, c = 9.2692(6)Å, β = 90.329(3)°, V = 718.07(9) Å3, and Z = 4. The thermal expansion of it was estimated in 5.40 × 10−5 K−1. This contribution is a step on the way to systematize the regularities in the coordination diversity between linear dicarboxylates and transition metal–inorganic buildings units of metal–organic frameworks.


Author(s):  
Miyo Yamane ◽  
Mihoko Takenoya ◽  
Shunsuke Yajima ◽  
Masayuki Sue

The enzymes of the BAHD superfamily, a large group of acyl-CoA-dependent acyltransferases in plants, are involved in the biosynthesis of diverse secondary metabolites. While the structures of several O-acyltransferases from the BAHD superfamily, such as hydroxycinnamoyl-CoA shikimate hydroxycinnamoyl transferase, have been elucidated, no structural information on N-acyltransferases is available. Hordeum vulgare agmatine coumaroyltransferase (HvACT) is an N-acyltransferase from the BAHD superfamily and is one of the most important enzymes in the secondary metabolism of barley. Here, an apo-form structure of HvACT is reported as the first structure of an N-acyltransferase from the BAHD superfamily. HvACT crystals diffracted to 1.8 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 57.6, b = 59.5, c = 73.6 Å, α = 90, β = 91.3 , γ = 90°. Like other known BAHD superfamily structures, HvACT contains two domains that adopt a two-layer αβ-sandwich architecture and a solvent-exposed channel that penetrates the enzyme core.


2015 ◽  
Vol 70 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

AbstractThe new compounds LiK[C(CN)3]2 and Li[C(CN)3]·½ (H3C)2CO were synthesized and their crystal structures were determined. Li[C(CN)3]·½ (H3C)2CO crystallizes in the orthorhombic space group Ima2 (no. 46) with the cell parameters a=794.97(14), b=1165.1(2) and c=1485.4(3) pm, while LiK[C(CN)3]2 adopts the monoclinic space group P21/c (no. 14) with the cell parameters a=1265.7(2), b=1068.0(2) and c=778.36(12) pm and the angle β=95.775(7)°. Single crystals of K[C(CN)3] were also acquired, and the crystal structure was refined more precisely than before corroborating earlier results.


2020 ◽  
Vol 84 (5) ◽  
pp. 699-704
Author(s):  
Luca Bindi ◽  
Andrew C. Roberts ◽  
Cristian Biagioni

AbstractAlstonite, BaCa(CO3)2, is a mineral described almost two centuries ago. It is widespread in Nature and forms magnificent cm-sized crystals. Notwithstanding, its crystal structure was still unknown. Here, we report the crystal-structure determination of the mineral and discuss it in relationship to other polymorphs of BaCa(CO3)2. Alstonite is trigonal, space group P31m, with unit-cell parameters a = 17.4360(6), c = 6.1295(2) Å, V = 1613.80(9) Å3 and Z = 12. The crystal structure was solved and refined to R1 = 0.0727 on the basis of 4515 reflections with Fo > 4σ(Fo) and 195 refined parameters. Alstonite is formed by the alternation, along c, of Ba-dominant and Ca-dominant layers, separated by CO3 groups parallel to {0001}. The main take-home message is to show that not all structure determinations of minerals/compounds can be solved routinely. Some crystals, even large ones displaying excellent diffraction quality, can be twinned in complex ways, thus making their study a crystallographic challenge.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 486 ◽  
Author(s):  
Andrey A. Zolotarev ◽  
Elena S. Zhitova ◽  
Maria G. Krzhizhanovskaya ◽  
Mikhail A. Rassomakhin ◽  
Vladimir V. Shilovskikh ◽  
...  

The technogenic mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin have been investigated by single-crystal X-ray diffraction, scanning electron microscopy and high-temperature powder X-ray diffraction. The NH4MgCl3·6H2O phase is monoclinic, space group C2/c, unit cell parameters a = 9.3091(9), b = 9.5353(7), c = 13.2941(12) Å, β = 90.089(8)° and V = 1180.05(18) Å3. The crystal structure of NH4MgCl3·6H2O was refined to R1 = 0.078 (wR2 = 0.185) on the basis of 1678 unique reflections. The (NH4)2Fe3+Cl5·H2O phase is orthorhombic, space group Pnma, unit cell parameters a = 13.725(2), b = 9.9365(16), c = 7.0370(11) Å and V = 959.7(3) Å3. The crystal structure of (NH4)2Fe3+Cl5·H2O was refined to R1 = 0.023 (wR2 = 0.066) on the basis of 2256 unique reflections. NH4MgCl3·6H2O is stable up to 90 °C and then transforms to the less hydrated phase isotypic to β-Rb(MnCl3)(H2O)2 (i.e., NH4MgCl3·2H2O), the latter phase being stable up to 150 °C. (NH4)2Fe3+Cl5·H2O is stable up to 120 °C and then transforms to an X-ray amorphous phase. Hydrogen bonds provide an important linkage between the main structural units and play the key role in determining structural stability and physical properties of the studied phases. The mineral phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O are isostructural with natural minerals novograblenovite and kremersite, respectively.


Sign in / Sign up

Export Citation Format

Share Document