A novel three-dimensional ZnIIcoordination polymer with 1,3,5-tris(imidazol-1-ylmethyl)benzene and cyclohexane-1,3,5-tricarboxylate ligands

2014 ◽  
Vol 70 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Kai-Long Zhong

In the ZnIIcompound poly[[bis(μ3-cyclohexane-1,3,5-tricarboxylato)bis[μ3-1,3,5-tris(imidazol-1-ylmethyl)benzene]trizinc(II)] hexahydrate], {[Zn3(C18H18N6)2(C9H9O6)2]·6H2O}n, based on mixed 1,3,5-tris(imidazol-1-ylmethyl)benzene and cyclohexane-1,3,5-tricarboxylate ligands, there are two types of crystallographically independent ZnIIcentres, one in a general position and one on a crystallographic twofold axis. They have similar fourfold distorted tetrahedral coordination geometries, ligated by two monodentate carboxylate groups from two cyclohexane-1,3,5-tricarboxylate ligands and by two N atoms from two 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands. The cyclohexane-1,3,5-tricarboxylate anions link the ZnIIcations to generate a two-dimensional layered metal–organic structure running parallel to the (\overline{2}01) plane. Adjacent layers are further connected by tripodal 1,3,5-tris(imidazol-1-ylmethyl)benzene ligands, resulting in a three-dimensional network. The solvent water molecules are linked to the cyclohexane-1,3,5-tricarboxylate ligandsviawater–carboxylate O—H...O hydrogen bonds.

Author(s):  
Wei-Qiang Liao ◽  
Yi Zhang

The structure of the title compound,catena-poly[[cadmium(II)-di-μ-chlorido-μ-(1,4-diazoniabicyclo[2.2.2]octane-1-carboxylato)] [[aquachloridocadmium(II)]-di-μ-chlorido] dihydrate], {[Cd(C8H15N2O2)Cl2][CdCl3(H2O)]·2H2O}n, contains two kinds of independent one-dimensional chain,viz.{[Cd(C8H15N2O2)Cl2]+}nand {[CdCl3(H2O)]−}n, and uncoordinated water molecules. Each CdIIcation in the {[Cd(C8H15N2O2)Cl2]+}nchain is octahedrally coordinated by two pairs of bridging chloride ligands and two O atoms from different bridging carboxylate groups. CdIIcations in the {[CdCl3(H2O)]−}nchain are also octahedrally surrounded by four bridging chloride ligands, one terminal chloride ligand and one coordinated water molecule. Hydrogen bonds between solvent water molecules and these two independent chains generate a three-dimensional framework containing two-dimensional zigzag layers.<!?tpb=18pt>


IUCrData ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Do Nam Lee ◽  
Youngmee Kim

In the title compound, {[Zn(C6H4O4)(C10H9N3)]·H2O}n, the di(pyridin-2-yl)amine (dpa) ligands chelate the ZnIIions, forming [Zn(dpa)]2+units which are connected by two independent bridging muconate [(2E,4E)-hexa-2,4-dienedioate] ligands to form chains. A crystallographic inversion centre is located at the mid-point of the central C—C bond of each muconate ligand. The carboxylate groups of the muconate ligands bridge the ZnIIions in asymmetric chelating modes. The ZnIIion is coordinated by four O atoms of two chelating carboxylate groups and two pyridyl N atoms in a distorted octahedral coordination environment. In the crystal, N—H...O and O—H...O hydrogen bonds connect chains and solvent water molecules, forming a two-dimensional network parallel to (101).


2014 ◽  
Vol 70 (12) ◽  
pp. 515-518 ◽  
Author(s):  
Erik Hennings ◽  
Horst Schmidt ◽  
Wolfgang Voigt

The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2solutions is governed by coordination competition of Cl−and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+both in a tetrahedral coordination with Cl−and in an octahedral environment defined by five water molecules and one Cl−shared with the [ZnCl4]2−unit. Thus, these two different types of Zn2+cations form isolated units with composition [Zn2Cl4(H2O)5] (pentaaqua-μ-chlorido-trichloridodizinc). The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+cations, one of which is tetrahedrally coordinated by four Cl−anions. The two other Zn2+cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O)6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O)6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.


2011 ◽  
Vol 66 (4) ◽  
pp. 355-358
Author(s):  
Man-Sheng Chen ◽  
Yi-Fang Deng ◽  
Zhi-Min Chen ◽  
Chun-Hua Zhang ◽  
Dai-Zhi Kuang

A unique 3D fourfold interpenetrated metal-organic framework, [Co(L)(H2O)2]・H2O (1), has been synthesized by the solvothermal reaction of H2L with Co(NO3)2・6H2O (H2L = 5-(isonicotinamido) isophthalic acid). Compound 1 crystallizes in the monoclinic space group P21/c, with the cell parameters: a = 81301(8), b = 107711(11), c = 167697(16) Å , β = 92.656(2) °, V = 14669(3) Å3, R1 = 0.0325 and wR2 = 0.0833. Its framework has (10,3)-b topology, where the cobalt atoms are alternately bridged by the pyridyl and the carboxylate groups of the L2− ligands into a three-dimensional network. Compound 1 displays antiferromagnetic interactions. Above 40 K, χm −1 obeys the Curie- Weiss law with C = 3.28 emu Kmol−1 andΘ = −0.66 K.


Author(s):  
Jun Wang ◽  
Jian-Qing Tao ◽  
Xiao-Juan Xu ◽  
Chun-Yun Tan

In the title mixed-ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdIIcentre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2−ligand, two O atoms from monodentate carboxylate groups of two different SDBA2−ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2−ligand, with one in a μ1-η1:η1chelating mode and the other in a μ2-η1:η1bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair-shaped water hexamer cluster is observed in the compound.


2018 ◽  
Vol 74 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Shu-Ying Han ◽  
Xue Niu ◽  
Jia Wang ◽  
Guo-Xia Jin ◽  
Ai Liu ◽  
...  

A polydentate ligand bridged by a fluorene group, namely 9,9-bis(2-hydroxyethyl)-2,7-bis(pyridin-4-yl)fluorene (L), has been prepared under solvothermal conditions in acetonitrile. Crystals of the three-dimensional metal–organic framework (MOF) poly[[[μ3-9,9-bis(2-hydroxyethyl)-2,7-bis(pyridin-4-yl)fluorene-κ3 N:N′:O]bis(methanol-κO)(μ-sulfato-κ2 O:O′)nickel(II)] methanol disolvate], {[Ni(SO4)(C27H24N2O2)(CH3OH)]·2CH3OH} n , (I), were obtained by the solvothermal reaction of L and NiSO4 in methanol. The ligand L forms a two-dimensional network in the crystallographic bc plane via two groups of O—H...N hydrogen bonds and neighbouring two-dimensional planes are completely parallel and stack to form a three-dimensional structure. In (I), the NiII ions are linked by sulfate ions through Ni—O bonds to form inorganic chains and these Ni-containing chains are linked into a three-dimensional framework via Ni—O and Ni—N bonds involving the polydentate ligand L. With one of the hydroxy groups of L coordinating to the NiII atom, the torsion angle of the hydroxyethyl group changes from that of the uncoordinated molecule. In addition, the adsorption properties of (I) with carbon dioxide were investigated.


2014 ◽  
Vol 70 (2) ◽  
pp. 198-201 ◽  
Author(s):  
Ji Qi ◽  
Xiang-Sheng Zhai ◽  
Hong-Lin Zhu ◽  
Jian-Li Lin

A tetranuclear CoIIIoxide complex with cubane topology, tetrakis(2,2′-bipyridine-κ2N,N′)di-μ2-carbonato-κ4O:O′-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3and 2,2′-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.


2007 ◽  
Vol 63 (11) ◽  
pp. m2752-m2752 ◽  
Author(s):  
Fa-Yan Meng ◽  
Yi-Ming Zhang ◽  
Seik Weng Ng

In the title complex, [Cd(NO3)2(C20H14N4)2]·2H2O, the CdII ion, which lies on a crystallographic twofold axis, is bis-chelated by two nitrate ligands and is coordinated by one tertiary N atom from each of two 1,3-bis(1H-benzimidazol-2-ylmethyl)benzene ligands in a distorted octahedral geometry. In the crystal structure, complex molecules and solvent water molecules are connected via hydrogen bonds to form a three-dimensional network.


2012 ◽  
Vol 68 (4) ◽  
pp. m402-m403
Author(s):  
Yun-Xia Hu ◽  
Yan Zhou ◽  
Fang-Ming Wang ◽  
Wen-Wei Zhang

The polymeric title compound, {[Co(C15H9NO4S)(H2O)3]·H2O}n, consists of chains along [001] made up from Co2+ions bridged by 10-methylphenothiazine-3,7-dicarboxylate anions. The Co2+ion, coordinated by three O atoms from two different carboxylate groups and three water molecules, displays a distorted octahedral environment. In the crystal, π–π interchain interactions, with centroid–centroid distances of 3.656 (2) and 3.669 (2) Å between the benzene rings of the ligands, assemble the chains into sheets parallel to (100). O—H...O hydrogen-bonding interactions between the coordinating water molecules and carboxylate O atoms link the sheets into a three-dimensional network.


2014 ◽  
Vol 70 (5) ◽  
pp. 502-507
Author(s):  
Hong-Jie Fan ◽  
Qian-Qian Xu ◽  
Tie-Zhen Ren ◽  
Xiang-Ying Xing ◽  
Kirsten E. Christensen

Two novel polymers exhibiting metal–organic frameworks (MOFs) have been synthesized by the combination of a metal ion with a benzene-1,3,5-tricarboxylate ligand (BTC) and 1,10-phenanthroline (phen) under hydrothermal conditions. The first compound, poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4 O:O′:O′′:O′′′)(μ-hydroxido-κ2 O:O)bis(1,10-phenanthroline-κ2 N,N′)dizinc(II)] 0.32-hydrate], {[Zn2(C9H3O6)(OH)(C12H8N2)2]·0.32H2O} n , denoted Zn–MOF, forms a two-dimensional network in which a binuclear Zn2 cluster serves as a 3-connecting node; the BTC trianion also acts as a 3-connecting centre. The overall topology is that of a 63 net. The phen ligands serve as appendages to the network and interdigitate with phen ligands belonging to adjacent parallel sheets. The second compound, poly[[(μ6-benzene-1,3,5-tricarboxylato-κ7 O 1,O 1′:O 1:O 3:O 3′:O 5:O 5′)(μ3-hydroxido-κ2 O:O:O)(1,10-phenanthroline-κ2 N,N′)dimanganese(II)] 1.26-hydrate], {[Mn2(C9H3O6)(OH)(C12H8N2)]·1.26H2O} n , denoted Mn–MOF, exists as a three-dimensional network in which an Mn4 cluster serves as a 6-connecting unit, while the BTC trianion again plays the role of a 3-connecting centre. The overall topology is that of the rutile net. Phen ligands act as appendages to the network and form the `S-shaped' packing mode.


Sign in / Sign up

Export Citation Format

Share Document