water layers
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 73)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 780
Author(s):  
Dáire O’Carroll ◽  
Niall English

We performed a self-consistent charge density functional tight-binding molecular dynamics (SCC DFTB-MD) simulation of an explicitly solvated anatase nanoparticle. From the 2 ps trajectory, we were able to calculate both dynamic and static properties, such as the energies of interaction and the formation of water layers at the surface, and compare them to the observed behaviour reported elsewhere. The high degree of agreement between our simulation and other sources, and the additional information gained from employing this methodology, highlights the oft-overlooked viability of DFTB-based methods for electronic structure calculations of large systems.


2022 ◽  
Vol 962 (1) ◽  
pp. 012026
Author(s):  
P V Matafonov

Abstract Meromictic soda lakes are considered models of reservoirs of the Early Proterozoic. Lake Doroninskoe belongs to a rare type of moderately salty alkaline soda lake with a carbonate type of salinity and pronounced meromixia. Studies and publications on the zoobenthos of the lake are rare. In 2005–2007, studies of zoobenthos and zooplankton of the lake were carried out. Meromixia of the water column caused the stable presence of zooplankton only in a layer up to 4 m. The distribution of the taxonomic abundance, quantitative development and structure of zoobenthos in the lake corresponds to the stratification of the water column into mixolimnion, chemocline and monimolimnion. Bottom biotopes and water column layers deeper than 4 m were uninhabited, which is probably due to the lack of oxygen and high hydrogen sulphide content in the bottom water layers due to meromixia. A similar distribution of zooplankton in Lake Doroninskoe and its mesocosm model was revealed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pushkar Prakash Kamble ◽  
Subodh Chavan ◽  
Rajendra Hodgir ◽  
Gopal Gote ◽  
K.P. Karunakaran

Purpose Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for liquids with a specific range of viscosity and surface tension. However, the use of multi-jet for low viscosity fluids like water is not very popular. This paper aims to demonstrate the technique, particularly for the water-ice 3 D printing. 3 D printed ice parts can be used as patterns for investment casting, templates for microfluidic channel fabrication, support material for polymer 3 D printing, etc. Design/methodology/approach Multi-jet ice 3 D printing is a novel technique for producing ice parts by selective deposition and freezing water layers. The paper confers the design, embodiment and integration of various subsystems of multi-jet ice 3 D printer. The outcomes of the machine trials are reported as case studies with elaborate details. Findings The prismatic geometries are realized by ice 3 D printing. The accuracy of 0.1 mm is found in the build direction. The part height tends to increase due to volumetric expansion during the phase change. Originality/value The present paper gives a novel architecture of the ice 3 D printer that produces the ice parts with good accuracy. The potential applications of the process are deliberated in this paper.


2021 ◽  
Author(s):  
Tongcui Guo ◽  
Lirong Dou ◽  
Guihai Wang ◽  
Dongbo He ◽  
Hongjun Wang ◽  
...  

Abstract Carbonate reservoirs are highly heterogeneous and poor in interwell connectivity. Therefore, it is difficult to predict the thin oil layers and water layers inside the carbonate reservoir with thickness less than 10 ft by seismic data. Based on the petrophysical analysis with core and well logging data, the carbonate target layers can be divided into two first level lithofacies (reservoir and non-reservoir) and three second-level lithofacies (oil, water and non-reservoir) by fluids. In this study, the 3D lithofacies probabilistic cubes of the first level and second-level level lithofacies were constructed by using the simulation method of well-seismic cooperative waveform indication. Afterwards, constrained by these probability cubes, the prestack geostatistical inversion was carried out to predict the spatial distribution of thin oil layers and water layers inside the thin reservoir. The major steps include: (1) Conduct rock physics analysis and lithofacies classification on carbonate reservoirs; (2) Construct the models constrained by two-level lithofacies; (3) Predict thin reservoirs in carbonates by prestack geostatistical inversion under the constraint of two-level lithofacies probability cubes. The prediction results show that through the two-level lithofacies-controlled prestack geostatistical inversion, the vertical and horizontal resolution of thin oil layers and water layers in carbonate reservoirs has been improved significantly, and the accuracy of thin oil reservoir prediction and the analyzing results of interwell oil layer connectivity have been improved significantly. Compared with the actual drilling results, the prediction results by 3D multi-level lithofacies-controlled inversion are consistent with the drilling results, and the details of thin carbonate reservoirs can be predicted. It has been proved that this method is reasonable and feasible. With this method, the prediction accuracy on thin reservoirs can be improved greatly. Compared with the conventional geostatistical inversion results, the 3D multi-level lithofacies-controlled inversion can improve significantly the vertical and horizontal resolution of prediction results of thin reservoirs and thin oil layers, and improve the reliability of interwell prediction results. For the prediction of thin carbonate reservoirs with serious heterogeneity, the 3D multi-level lithofacies-controlled inversion is an effective prediction method.


2021 ◽  
Author(s):  
Ramsey James White ◽  
Abdullah Abdulrahman Al-Hamoud ◽  
Miguel Angel Lopez

Abstract Saudi Aramco operates several electrostatic coalescers for bulk emulsion separation and crude desalting. One of the major challenges in operating electrostatic coalescers is the potential buildup of tight emulsions and a rag layer at the interface layer, which causes short-circuiting of the electrostatic grids which increases the risk excessive carryover of water with the crude. Conventional liquid level instrumentation cannot measure the thickness of emulsion layers since the level taps are at the clean oil and water layers. Consequently, the buildup of emulsions is normally not detected by operators. A capacitance-based emulsion detection system was installed at one of the electrostatic coalescers of a Saudi Aramco facility. The system is comprised of multiple probes installed at various elevations in the vessel. Each probe measures the capacitance of the liquid in which it is immersed in. The data is then transmitted to the DCS, where an algorithm computes the oil/water content. Saudi Aramco developed an enhanced predictive alarm logic and advisory tool using the measured capacitance data so that operations may take preemptive measures to prevent upsets from occurring. The alarm system was tested over an extended period of time and it has shown that it can accurately detect the buildup of emulsions prior to an upset in the electrostatic coalescer. What is unique about the system is that it utilizes a combination of absolute capacitance measurements and capacitance variations in the algorithm. Emulsion buildups are detected by the alarm system hours before a potential upset, providing operators ample time to take preemptive measures such as increasing the demulsifier injection rate, desludging the vessel or lowering the interface level. The system significantly reduced the number of electrostatic coalescer upsets at the facility and crude quality was enhanced. Upon inspection of the probes during shutdowns, no buildup of deposits, which impacts capacitance readings, were found on the probes since a flushing system was installed. The alarm system has been utilized for four years with no major issues. Utilizing the capacitance probes to develop an algorithm for an alarm system is a novel technique to detect emulsion layer buildup hours prior to a potential electrostatic grid upset. Large-scale deployment is more economical as it is more cost-effective than radioactive profilers and is logistically easier to manage.


2021 ◽  
pp. 102736
Author(s):  
Juliana Correa Neiva Ferreira ◽  
Natascha Menezes Bergo ◽  
Pedro Marone Tura ◽  
Mateus Gustavo Chuqui ◽  
Frederico P. Brandini ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1261
Author(s):  
Julia S. Kirchner ◽  
Karsten A. Lettmann ◽  
Bernhard Schnetger ◽  
Jörg-Olaf Wolff ◽  
Hans-Jürgen Brumsack

The reduction in CO2 emissions is a major task for the coming decades. Accelerated weathering of limestone (AWL) can be used to capture CO2 from effluent gas streams and store it as bicarbonate in marine environments. We give an overview of the fundamental aspects of AWL, including associated CO2 emissions during the operation of AWL, characteristics of the accumulating bicarbonate-rich product water, and factors influencing the outgassing of CO2 from the ocean back into the atmosphere. Based on these aspects, we identify locations where AWL could be carried out favorably. The energy demand for AWL reduces the theoretical CO2 sequestration potential, for example, by only 5% in the case of a 100 km transport of limestone on roads. AWL-derived product water is characterized by high alkalinity but low pH values and, once in contact with the atmosphere, passive outgassing of CO2 from AWL-derived water occurs. This process is mainly driven by the difference between the fCO2 in the atmosphere and the oceanic surface layer, as well as the sea surface temperature at the discharge site. Promising sites for AWL may be in Florida or around the Mediterranean Sea, where outgassing could be prevented by injections into deep water layers.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1162
Author(s):  
Tatyana Gebauer ◽  
Radek Gebauer ◽  
Petr Císař ◽  
Hung Quang Tran ◽  
Ondřej Tomášek ◽  
...  

Restocking programmes of different fish species have been implemented worldwide. However, the survival of hatchery-reared fish after release to riverine ecosystems is at a very low level. One of the reasons for the high mortality rate of post-released fish is their modified swimming behaviour due to the hatchery rearing practice. To investigate one of the possible causes for modified swimming behaviour, Acipenser baerii larvae were exposed to surface- and bottom-feeding applications with day and night light regimes in a factorial design. We also analysed the effect of 5 and 10 days of starvation after different feeding applications on sturgeon swimming behaviour. The surface-feeding application was previously expected to promote the frequent Siberian sturgeon swim up to the mid- and top-water layers in our rearing facilities. However, our results indicated that the modified behaviour of the Siberian sturgeon in our study was caused by fish starvation and a possible predator-free environment rather than by the method of feed application or the day/night light regimes. These results may be used to improve the implementation of restocking programmes either through modified hatchery rearing practice or the training of foraging skills with predator stimuli.


Sign in / Sign up

Export Citation Format

Share Document