Structural investigation of one- and three-dimensional lanthanide(III) coordination polymers based on functionalized terpyridine carboxylate and aromatic dicarboxylate ligands

2019 ◽  
Vol 75 (4) ◽  
pp. 422-432 ◽  
Author(s):  
Chao Bai ◽  
Bin Liu ◽  
Huai-Ming Hu ◽  
Jin-Dian Li ◽  
Xiaofang Wang ◽  
...  

Three series of lanthanide coordination polymers, namely catena-poly[[lanthanide(III)-μ2-(benzene-1,2-dicarboxylato)-μ2-[2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O} n or {[Ln(1,2-bdc)(L)]·H2O} n , with lanthanide (Ln) = dysprosium (Dy, 1), holmium (Ho, 2) and erbium (Er, 3), poly[bis(μ2-benzene-1,3-dicarboxylato)bis[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2] n or [Ln2(1,3-bdc)2(L)2] n , with Ln = gadolinium (Gd, 4), Ho (5) and Er (6), and poly[(μ2-benzene-1,4-dicarboxylato)[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)] n or [Ln(1,4-bdc)(L)] n , with Ln = Dy (7), Ho (8), Er (9) and ytterbium (Yb, 10), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single-crystal X-ray diffraction. Compounds 1–3 possess one-dimensional loop chains with Ln2(COO)2 units, which are extended into three-dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6-connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7–10 display 8-connected 3D frameworks with the topological type rob, consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.

2011 ◽  
Vol 66 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Chao Xu ◽  
Sheng-Bo Liu ◽  
Taike Duan ◽  
Qun Chen ◽  
Qian-Feng Zhang

Two novel cadmium coordination polymers, [Cd(pydc)2(tu)]n (1) and [Cd2(SO4)(nic)2(tu)1.5 - (H2O)2]n (2) (pydc = pyridine-2,3-dicarboxylate, nic = nicotinate, tu = thiourea), have been synthesized under hydrothermal conditions and structurally characterized by X-ray diffraction analysis. 1 is a one-dimensional ladder coordination polymer in a two-dimensional network formed by hydrogen bonds. 2 consists of two kinds of Cd(II) centers in different coordination environments connected via nicotinate and sulfate to form a two-dimensional grid network integrated in a three-dimensional framework generated by hydrogen bonds. 2 shows intense fluorescent emission in the solid state at room temperature


2015 ◽  
Vol 68 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenlong Liu ◽  
Xueying Wang ◽  
Mengqiang Wu ◽  
Bing Wang

Two new coordination polymers, namely, {[Cd3(bpt)2(bimb)2]·2(H2O)}n (1) and [Zn3(bpt)2(bimb)2]n (2) (bpt = biphenyl-3,4′,5-tricarboxylate, bimb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene), have been obtained under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterised by elemental analysis and infrared spectroscopy. Complex 1 exhibits a trinodal (4,4,4)-connected topology with Schläfli symbol of (4.62.83)4.(64.82). Complex 2 is also a three-dimensional structure and displays a (3,4,6)-connected topology with Schläfli symbol of (4.62)2.(42.66.85.102).(64.82). It is shown that the asymmetrically tricarboxylate can bear diverse structures regulated by metal ions. The photoluminescence behaviours of compounds 1 and 2 were also discussed.


2017 ◽  
Vol 41 (6) ◽  
pp. 365-369 ◽  
Author(s):  
Chongchong Xue ◽  
Jingwen Shi ◽  
Daopeng Zhang

The coordination polymers {Mg[Fe(L)(CN)5]}n·0.5nH2O and {MgCu2(CH3COO)6}n [L = bis( N-imidazolyl)methane] have been synthesised. X-ray diffraction revealed that {Mg[Fe(L)(CN)5]}n·0.5nH2O has a one-dimensional neutral chain structure consisting of alternating [Mg(L)2(H2O)2)]2+ species and [Fe(L)(CN)5]2– building blocks, which can be further linked into a three-dimensional supramolecular structure by inter-chain p–p interactions. {MgCu2(CH3COO)6}n has a three-dimensional network with the [MgCu2(CH3COO)6] unit as neutral core extended by Mg–O bonds. Magnetic susceptibility studies on {MgCu2(CH3COO)6}n revealed antiferromagnetic interactions between adjacent Cu(II) ions.


2018 ◽  
Vol 74 (2) ◽  
pp. 240-247 ◽  
Author(s):  
Nassima Bendjellal ◽  
Chahrazed Trifa ◽  
Sofiane Bouacida ◽  
Chaouki Boudaren ◽  
Mhamed Boudraa ◽  
...  

In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N-donor ligands have been employed to assemble metal–organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10-phenanthroline-κ2N,N′)bis(μ-3-phenylprop-2-enoato-κ3O,O′:O)calcium(II)], [Ca(C10H7O2)2(C10H8N2)]n, (1), and poly[(1,10-phenanthroline-κ2N,N′)(μ3-3-phenylprop-2-enoato-κ4O:O,O′:O′)(μ-3-phenylprop-2-enoato-κ3O,O′:O)barium(II)], [Ba(C10H7O2)2(C10H8N2)]n, (2), and characterized them by FT–IR and UV–Vis spectroscopies, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction analysis, as well as by powder X-ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine-coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C—H...O hydrogen bonds and π–π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three-dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297–1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.


2018 ◽  
Vol 74 (6) ◽  
pp. 734-741 ◽  
Author(s):  
Olga Drath ◽  
Robert W. Gable ◽  
Colette Boskovic

The combination of cobalt, 3,5-di-tert-butyldioxolene (3,5-dbdiox) and 1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane (tpch) yields two coordination polymers with different connectivities, i.e. a one-dimensional zigzag chain and a two-dimensional sheet. Poly[[bis(3,5-di-tert-butylbenzene-1,2-diolato)bis(1,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-yl-3-olato)[μ4-1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane]cobalt(III)]–ethanol–water 1/7/5], {[Co2(C14H20O2)4(C26H24N4O)]·7C2H5OH·5H2O} n or {[Co2(3,5-dbdiox)4(tpch)}·7EtOH·5H2O} n , is the second structurally characterized example of a two-dimensional coordination polymer based on linked {Co(3,5-dbdiox)2} units. Variable-temperature single-crystal X-ray diffraction studies suggest that catena-poly[[[(3,5-di-tert-butylbenzene-1,2-diolato)(1,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-yl-3-olato)cobalt(III)]-μ-1-hydroxy-1,2,4,5-tetrakis(pyridin-4-yl)cyclohexane]–ethanol–water (1/1/5)], {[Co(C14H20O2)2(C26H24N4O)]·C2H5OH·5H2O} n or {[Co(3,5-dbdiox)2(tpch)]·EtOH·5H2O} n , undergoes a temperature-induced valence tautomeric interconversion.


2019 ◽  
Vol 75 (8) ◽  
pp. 1142-1149 ◽  
Author(s):  
Zhi-Chao Shao ◽  
Xiang-Ru Meng ◽  
Hong-Wei Hou

Changing the pH value of a reaction system can result in polymers with very different compositions and architectures. Two new coordination polymers based on 1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium) (L 2−), namely catena-poly[[[tetraaquacadmium(II)]-μ2-1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)] 1.66-hydrate], {[Cd(C22H14N2O8)(H2O)4]·1.66H2O} n , (I), and poly[{μ6-1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)}cadmium(II)], [Cd(C22H14N2O8)] n , (II), have been prepared in the presence of NaOH or HNO3 and structurally characterized by single-crystal X-ray diffraction. In polymer (I), each CdII ion is coordinated by two halves of independent L 2− ligands, forming a one-dimensional chain structure. In the crystal, these chains are further connected through O—H...O hydrogen bonds, leading to a three-dimensional hydrogen-bonded network. In polymer (II), each hexadentate L 2− ligand coordinates to six CdII ions, resulting in a three-dimensional network structure, in which all of the CdII ions and L 2− ligands are equivalent, respectively. The IR spectra, thermogravimetric analyses and fluorescence properties of both reported compounds were investigated.


2015 ◽  
Vol 68 (6) ◽  
pp. 889 ◽  
Author(s):  
Jian Hua Zou ◽  
Jian Nan Zhu ◽  
Han Jie Cui ◽  
Zhong Wang ◽  
Da Liang Zhu ◽  
...  

Two isomeric ligands Htzpya and Hpytza (Htzpya = 3-(5-tetrazolyl)pyridine-1-acetic acid, Hpytza = 5-(3-pyridyl)tetrazole-2-acetic acid) have been selected to react with DyCl3·6H2O or PrCl3·6H2O under hydrothermal conditions, resulting in the formation of four new coordination compounds, mononuclear [Dy(tzpya)2(H2O)5]Cl·4H2O (1), dinuclear [Pr2(tzpya)2(H2O)12]Cl4·2H2O (2), and two one-dimensional polymers [Dy(pytza)2Cl(H2O)2]n (3) and [Pr(pytza)2Cl(H2O)2]n (4), whose structures are controlled by the different positions of the carboxylate group. These compounds were characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. Compounds 1–4 are self-assembled to form three-dimensional network structures by hydrogen bonding interactions. Furthermore, the luminescence properties were also investigated at room temperature in the solid state.


Chemistry ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Chia-Jou Chen ◽  
Chia-Ling Chen ◽  
Yu-Hsiang Liu ◽  
Wei-Te Lee ◽  
Ji-Hong Hu ◽  
...  

Reactions of the semi-rigid N,N′-bis(3-pyridyl)terephthalamide (L) with divalent metal salts in the presence of dicarboxylic acids afforded [Cd(L)0.5(1,2-BDC)(H2O)]n (1,2-H2BDC = benzene-1,2-dicarboxylic acid), 1, {[Cd(L)1.5(1,3-BDC)(H2O)]·5H2O}n (1,3-H2BDC = benzene-1,3-dicarboxylic acid), 2a, {[Cd(1,3-BDC)(H2O)3]·2H2O}n, 2b, {[Cd(L)0.5(1,4-BDC)(H2O)2]·H2O}n (1,4-H2BDC = benzene-1,4-dicarboxylic acid), 3, and [Cu(L)0.5(5-tert-IPA)]n (5-tert-IPA = 5-tert-butylbenzene-1,3-dicarboxylic acid), 4, which have been structurally characterized by single crystal X-ray diffraction. Complexes 1 and 3 are two-dimensional (2D) layers with the bey and the hcb topologies, and 2a and 2b are one-dimensional (1D) ladder and zigzag chain, respectively, while 4 shows a 3-fold interpenetrated three-dimensional (3D) net with the cds topology. The structures of these coordination polymers containing the semi-rigid L ligands are subject to the donor atom positions and the identity of the dicarboxylate ligands, which are in marked contrast to those obtained from the flexible bis-pyridyl-bis-amide ligands that form self-catenated nets. The luminescence of 1 and 3 and thermal properties of complexes 1, 3, and 4 are also discussed.


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


Sign in / Sign up

Export Citation Format

Share Document