Two CoII coordination polymers of biphenyl-2,2′,5,5′-tetracarboxylic acid with flexible N-donor ligands: syntheses, structures and magnetic properties

2019 ◽  
Vol 75 (8) ◽  
pp. 1073-1083 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Jing Su ◽  
...  

Two CoII-based coordination polymers, namely poly[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){μ2-1,3-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2] n or [Co2(o,m-bpta)(1,3-bimb)2] n (I), and poly[[aqua(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){1,4-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O} n or {[Co2(o,m-bpta)(1,4-bimb)2(H2O)2]·4H2O} n (II), were synthesized from a mixture of biphenyl-2,2′,5,5′-tetracarboxylic acid, i.e. [H4(o,m-bpta)], CoCl2·6H2O and N-donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. The bridging (o,m-bpta)4− ligands combine with CoII ions in different μ4-coordination modes, leading to the formation of one-dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II, respectively. The bis[(1H-imidazol-1-yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three-dimensional (3D) networks. Complex I shows a (2,4)-connected 3D network with left- and right-handed helical chains constructed by (o,m-bpta)4− ligands. Complex II is a (4,4)-connected 3D novel network with ribbon-like chains formed by (o,m-bpta)4− linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co...Co distances. An attempt has been made to fit the χM T results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.

2021 ◽  
Vol 77 (2) ◽  
pp. 90-99
Author(s):  
Said Lifa ◽  
Chahrazed Trifa ◽  
Sofiane Bouacida ◽  
Chaouki Boudaren ◽  
Hocine Merazig

Two new metal coordination complexes, namely, poly[aqua(μ6-benzene-1,2,4,5-tetracarboxylic acid-κ8 O 1:O 1,O 2:O 2′:O 4:O 4,O 5:O 5′)(μ-but-2-enedioato-κ2 O 1:O 4)potassium(I)], [K2(C4H2O4)(C10H6O8)(H2O)2] n or [K2(fum)(H4btec)(H2O)2] n , (1), and poly[aqua(μ8-2,5-dicarboxybenzene-1,4-dicarboxylato-κ12 O 1:O 1′,O 2:O 2,O 2′:O 2′:O 4:O 4′,O 5:O 5,O 5′:O 5′)(μ-ethanedioato-κ4 O 1,O 2:O 1′,O 2′)strontium(II)], [Sr2(C2O4)(C10H4O8)(H2O)2] n or [Sr2(ox)(H2btec)(H2O)2] n , (2) (H4btec = benzene-1,2,4,5-tetracarboxylic acid, H2btec = 2,5-dicarboxybenzene-1,4-dicarboxylate, fum = fumarate and ox = oxalate), have been obtained under hydrothermal conditions by reacting the different alkali and alkaline earth metal salts with H4btec, fumaric acid (H2fum) and oxalic acid (H2ox). Complexes (1) and (2) were structurally characterized by single-crystal X-ray diffraction, IR and UV–Vis spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetic analysis–differential scanning calorimetry (TGA–DSC). Complex (1) displays a two-dimensional (2D) layer with the K+ ion in a distorted pentagonal bipyramidal geometry and exhibits a uninodal 6-connected hxl/Shubnikov plane net (3,6) with {36.46.53} topology. Complex (2) displays a three-dimensional (3D) network structure, in which the Sr2+ ion is in a distorted monocapped square antiprism geometry. The framework possess a binodal (5,8)-connected net with the Schläfli symbol {32.410.58.64.74}{32.46.52}2. The 3D Hirshfeld surfaces and 2D fingerprint plots show that the main interactions are the O...H/H...O intermolecular interactions. Moreover, the thermal decompositions of (1) and (2) in the temperature range 303–1273 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Wenjun Gu ◽  
Jinzhong Gu ◽  
Alexander M. Kirillov

Two new cadmium(II)-based materials, featuring two-dimensional (2D) [Cd2(μ6-deta)(bpy)(H2O)]n (1) and three-dimensional (3D) [Cd2(μ5-deta)(bpy)2(H2O)]n (2) structures, were constructed by the hydrothermal method from 2,3′,4′,5-diphenyl ether tetracarboxylic acid (H4deta) as an unexplored linker in research on coordination polymers (CPs) and 2,2′-bipyridine (bpy) as a mediator of crystallization. Microcrystalline samples of 1 and 2 were analyzed by IR/PXRD/EA/TGA and X-ray diffraction using single crystals. Structures and topologies of CPs 1 and 2 were established, revealing a 4,6L45 topological layer in 1 and a 3,5T1 topological framework in 2. Structural differences for 1 and 2 are attributed to distinct molar ratios between Cd2+ and bpy during the hydrothermal synthesis. Luminescence and thermal behavior of the obtained materials were also investigated. The present work opens up the use of an unexplored 2,3′,4′,5-diphenyl ether tetracarboxylic acid as a versatile and flexible linker toward the generation of functional coordination polymer materials.


2019 ◽  
Vol 75 (5) ◽  
pp. 575-583 ◽  
Author(s):  
Yuting Bai ◽  
Meirong Han ◽  
Enxi Wu ◽  
Sisi Feng ◽  
Miaoli Zhu

Two three-dimensional (3D) CdII coordination polymers, namely poly[[di-μ-aqua-diaquabis{μ5-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O} n , (I), and poly[[aqua{μ6-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}(μ-formato)[μ-1,1′-(1,4-phenylene)bis(1H-imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O} n , (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5-tris(4-carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, powder X-ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3− ligands in a μ5-coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four syn–syn carboxylate groups and two μ2-water molecules to form trinuclear [Cd3(COO)4(μ2-H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one-dimensional inorganic pillars are connected by tcpb3− linkers in a μ5-coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry-independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3− ligands into sheets or by 1,4-bis(imidazol-1-yl)benzene ligands into undulating layers, and finally these two-dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g−1 with apparent changes in the visible colour and the UV–Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.


2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


2019 ◽  
Vol 75 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Chun Han ◽  
...  

Coordination polymers constructed from conjugated organic ligands and metal ions with a d 10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII-based coordination polymer, namely poly[aqua(μ6-biphenyl-3,3′,5,5′-tetracarboxylato)(μ2-4,4′-bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2] n or [Zn2(m,m-bpta)(4,4′-bipy)(H2O)2] n , was synthesized from a mixture of biphenyl-3,3′,5,5′-tetracarboxylic acid [H4(m,m-bpta)], 4,4′-bipyridine (4,4′-bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis, and features a μ6-coordination mode. The ZnII ions adopt square-pyramidal geometries and are bridged by two syn–syn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m-bpta)4− ligands to produce a two-dimensional grid-like layer that exhibits a stair-like structure along the a axis. Adjacent layers are linked by 4,4′-bipy ligands to form a three-dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.


2019 ◽  
Vol 72 (5) ◽  
pp. 341 ◽  
Author(s):  
Yu-Ting Yang ◽  
Chang-Zheng Tu ◽  
Xiao-Lin Xu ◽  
Li-Li Xu ◽  
Bang-Ling Yan ◽  
...  

Solvothermal reactions of 3,3′,5,5′-biphenyltetracarboxylic acid (H4BPTC) and cobalt(ii) ions in the presence of two different flexible N-donor ancillary ligands afford two novel coordination polymers, {[Co(BPTC)0.5(bix)]·H2O}n (1), {[Co(BPTC)0.5(bpp)]·3H2O}n (2) (bix=1,4-bis(imidazol-1-ylmethyl)benzene; bpp=1,3-bis(4-pyridyl)propane). Their structures have been determined by elemental analyses, IR spectra, single-crystal X-ray diffraction analyses, and powder X-ray diffraction. The pillared layered framework of 1 can be simplified to a (4,6)-connected net with a Schläfli symbol of (44·62)(44·69·82). Complex 2 manifests a bilayered structure, and can be simplified to a (4,4)-connected net with a Schläfli symbol of (55·8)(54·62). The thermal stabilities of both complexes and the magnetic behaviours of 1 are also discussed.


2015 ◽  
Vol 68 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenlong Liu ◽  
Xueying Wang ◽  
Mengqiang Wu ◽  
Bing Wang

Two new coordination polymers, namely, {[Cd3(bpt)2(bimb)2]·2(H2O)}n (1) and [Zn3(bpt)2(bimb)2]n (2) (bpt = biphenyl-3,4′,5-tricarboxylate, bimb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene), have been obtained under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterised by elemental analysis and infrared spectroscopy. Complex 1 exhibits a trinodal (4,4,4)-connected topology with Schläfli symbol of (4.62.83)4.(64.82). Complex 2 is also a three-dimensional structure and displays a (3,4,6)-connected topology with Schläfli symbol of (4.62)2.(42.66.85.102).(64.82). It is shown that the asymmetrically tricarboxylate can bear diverse structures regulated by metal ions. The photoluminescence behaviours of compounds 1 and 2 were also discussed.


2015 ◽  
Vol 68 (6) ◽  
pp. 956 ◽  
Author(s):  
Ming-An Dang ◽  
Zi-Feng Li ◽  
Ying Liu ◽  
Gang Li

Three coordination polymers [Sr(p-H2MOPhIDC)2]n (1) (p-H3MOPhIDC = 2-p-methoxyphenyl-1H-imidazole-4,5-dicarboxylic acid), {[Cd2(p-HMOPhIDC)2(4,4′-bipy)]⋅H2O}n (4,4′-bipy = 4,4′-bipyridine) (2), and [Zn(p-HMOPhIDC)(4,4′-bipy)]n (3) have been solvothermally synthesized, and structurally characterized by single-crystal X-ray diffraction. Polymer 1 indicates a three-dimensional framework, which can be simplified as a 6-connected lattice. Polymer 2 is also a three-dimensional framework, and contains mixed bridging ligands HMOPhIDC2– and 4,4′-bipy. Polymer 3 exhibits a sheet structure bearing infinite rectangles. The coordination modes of the p-H3MOPhIDC ligand, and the thermal and solid-state photoluminescence properties of the polymers have been investigated as well.


2014 ◽  
Vol 70 (11) ◽  
pp. 1025-1028
Author(s):  
Hong Shen

The title CdIIcoordination polymer, [Cd(C10H8O4)(C12H12N6)0.5(H2O)]n, has been obtained by the hydrothermal method and studied by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, IR spectroscopy and fluorescence spectroscopy. The compound forms a novel three-dimensional framework with 3,8-connected three-dimensional binodal {4.52}2{42.510.612.7.83} topology. An investigation of its photoluminescence properties shows that the compound exhibits a strong fluorescence emission in the solid state at room temperature.


2019 ◽  
Vol 75 (4) ◽  
pp. 422-432 ◽  
Author(s):  
Chao Bai ◽  
Bin Liu ◽  
Huai-Ming Hu ◽  
Jin-Dian Li ◽  
Xiaofang Wang ◽  
...  

Three series of lanthanide coordination polymers, namely catena-poly[[lanthanide(III)-μ2-(benzene-1,2-dicarboxylato)-μ2-[2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O} n or {[Ln(1,2-bdc)(L)]·H2O} n , with lanthanide (Ln) = dysprosium (Dy, 1), holmium (Ho, 2) and erbium (Er, 3), poly[bis(μ2-benzene-1,3-dicarboxylato)bis[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2] n or [Ln2(1,3-bdc)2(L)2] n , with Ln = gadolinium (Gd, 4), Ho (5) and Er (6), and poly[(μ2-benzene-1,4-dicarboxylato)[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)] n or [Ln(1,4-bdc)(L)] n , with Ln = Dy (7), Ho (8), Er (9) and ytterbium (Yb, 10), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single-crystal X-ray diffraction. Compounds 1–3 possess one-dimensional loop chains with Ln2(COO)2 units, which are extended into three-dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6-connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7–10 display 8-connected 3D frameworks with the topological type rob, consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.


Sign in / Sign up

Export Citation Format

Share Document