One-dimensional copper(II) coordination polymers based on 1,3-bis(pyridin-4-yl)propane and diimine ligands

2019 ◽  
Vol 75 (5) ◽  
pp. 496-503 ◽  
Author(s):  
Satish Shantaram Bhat ◽  
Naveen Shivalingegowda ◽  
Vidyanand Krishna Revankar ◽  
Vitthal Ajinath Kawade ◽  
Ray J. Butcher ◽  
...  

Two one-dimensional (1D) coordination polymers (CPs), namely catena-poly[[[aqua(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)copper(II)]-μ-1,3-bis(pyridin-4-yl)propane-κ2 N:N′] nitrate], {[Cu(NO3)(C10H8N2)(C13H14N2)(H2O)]·NO3} n (1), and catena-poly[[[aqua(nitrato-κO)(1,10-phenanthroline-κ2 N,N′)copper(II)]-μ-1,3-bis(pyridin-4-yl)propane-κ2 N:N′] nitrate], {[Cu(NO3)(C12H8N2)(C13H14N2)(H2O)]·NO3} n (2), have been synthesized using [Cu(NO3)(NN)(H2O)2]NO3, where NN = 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen), as a linker in a 1:1 molar ratio. The CPs were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray structure determination. The 1,3-bis(pyridin-4-yl)propane (dpp) ligand acts as a bridging ligand, leading to the formation of a 1D polymer. The octahedral coordination sphere around copper consists of two N atoms from bpy for 1 or phen for 2, two N atoms from dpp, one O atom from water and one O atom from a coordinated nitrate anion. Each structure contains two crystallographically independent chains in the asymmetric unit and the chains are linked via hydrogen bonds into a three-dimensional network.

Author(s):  
Yue-Feng Zhang ◽  
Jian-Ping Ma ◽  
Qi-Kui Liu ◽  
Yu-Bin Dong

The novel asymmetric bridging ligand 1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole (L) has been used to construct the coordination polymerscatena-poly[[[dibromidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole] monohydrate], {[CdBr2(C24H18N4)]·H2O}n, (I), andcatena-poly[[diiodidocadmium(II)]-μ3-1-[(pyridin-3-yl)methyl]-2-[4-(pyridin-3-yl)phenyl]-1H-benzimidazole], [CdI2(C24H18N4)]n, (II). Compounds (I) and (II) are closely related one-dimensional polymers based on 16- and 20-membered macrocycles along the chains, but they are not isomorphous. The chains are crosslinked into a two-dimensional networkviahydrogen bonds and π–π interactions in (I), and into a three-dimensional framework through π–π interactions in (II). One well-ordered solvent water molecule per asymmetric unit is included in (I) and forms O...Br hydrogen bonds.


2017 ◽  
Vol 41 (6) ◽  
pp. 365-369 ◽  
Author(s):  
Chongchong Xue ◽  
Jingwen Shi ◽  
Daopeng Zhang

The coordination polymers {Mg[Fe(L)(CN)5]}n·0.5nH2O and {MgCu2(CH3COO)6}n [L = bis( N-imidazolyl)methane] have been synthesised. X-ray diffraction revealed that {Mg[Fe(L)(CN)5]}n·0.5nH2O has a one-dimensional neutral chain structure consisting of alternating [Mg(L)2(H2O)2)]2+ species and [Fe(L)(CN)5]2– building blocks, which can be further linked into a three-dimensional supramolecular structure by inter-chain p–p interactions. {MgCu2(CH3COO)6}n has a three-dimensional network with the [MgCu2(CH3COO)6] unit as neutral core extended by Mg–O bonds. Magnetic susceptibility studies on {MgCu2(CH3COO)6}n revealed antiferromagnetic interactions between adjacent Cu(II) ions.


2013 ◽  
Vol 70 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Ai-Guo Li ◽  
Qi-Kui Liu ◽  
Yan-An Li ◽  
Zhi-Xian Liu ◽  
Yu-Bin Dong

A new 2,2′-bi-1H-benzimidazole bridging organic ligand, namely 1,1′-bis(pyridin-4-ylmethyl)-2,2′-bi-1H-benzimidazole, C26H20N6,Lor (I), has been synthesized and used to create three new one-dimensional coordination polymers,viz.catena-poly[[dichloridomercury(II)]-μ-1,1′-bis(pyridin-4-ylmethyl)-2,2′-bi-1H-benzimidazole], [HgCl2(C26H20N6)]n, (II), and the bromido, [HgBr2(C26H20N6)]n, (III), and iodido, [HgI2(C26H20N6)]n, (IV), analogues. Free ligandLcrystallizes with two symmetry-independent half-molecules in the asymmetric unit and eachLmolecule resides on a crytallographic inversion centre. In structures (II)–(IV), theLligand is also positioned on a crystallographic inversion centre, whereas the Hg centre resides on a crystallographic twofold axis. Compound (I) adopts ananticonformation in the solid state and forms a two-dimensional network in the crystallographicbcplaneviaπ–π and C—H...π interactions. The three HgIIcoordination complexes, (II)–(IV), have one-dimensional zigzag chains composed ofLand HgX2(X= Cl, Br and I), and the HgIIcentres are in a distorted tetrahedral [HgX2N2] coordination geometry. Complexes (III) and (IV) are isomorphous, whereas complex (II) displays an interesting conformational difference from the others,i.e.a twist in the flexible bridging ligand.


2011 ◽  
Vol 66 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Chao Xu ◽  
Sheng-Bo Liu ◽  
Taike Duan ◽  
Qun Chen ◽  
Qian-Feng Zhang

Two novel cadmium coordination polymers, [Cd(pydc)2(tu)]n (1) and [Cd2(SO4)(nic)2(tu)1.5 - (H2O)2]n (2) (pydc = pyridine-2,3-dicarboxylate, nic = nicotinate, tu = thiourea), have been synthesized under hydrothermal conditions and structurally characterized by X-ray diffraction analysis. 1 is a one-dimensional ladder coordination polymer in a two-dimensional network formed by hydrogen bonds. 2 consists of two kinds of Cd(II) centers in different coordination environments connected via nicotinate and sulfate to form a two-dimensional grid network integrated in a three-dimensional framework generated by hydrogen bonds. 2 shows intense fluorescent emission in the solid state at room temperature


2019 ◽  
Vol 75 (8) ◽  
pp. 1142-1149 ◽  
Author(s):  
Zhi-Chao Shao ◽  
Xiang-Ru Meng ◽  
Hong-Wei Hou

Changing the pH value of a reaction system can result in polymers with very different compositions and architectures. Two new coordination polymers based on 1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium) (L 2−), namely catena-poly[[[tetraaquacadmium(II)]-μ2-1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)] 1.66-hydrate], {[Cd(C22H14N2O8)(H2O)4]·1.66H2O} n , (I), and poly[{μ6-1,1′-[1,4-phenylenebis(methylene)]bis(3,5-dicarboxylatopyridinium)}cadmium(II)], [Cd(C22H14N2O8)] n , (II), have been prepared in the presence of NaOH or HNO3 and structurally characterized by single-crystal X-ray diffraction. In polymer (I), each CdII ion is coordinated by two halves of independent L 2− ligands, forming a one-dimensional chain structure. In the crystal, these chains are further connected through O—H...O hydrogen bonds, leading to a three-dimensional hydrogen-bonded network. In polymer (II), each hexadentate L 2− ligand coordinates to six CdII ions, resulting in a three-dimensional network structure, in which all of the CdII ions and L 2− ligands are equivalent, respectively. The IR spectra, thermogravimetric analyses and fluorescence properties of both reported compounds were investigated.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 795 ◽  
Author(s):  
Hui-Chen Yu ◽  
Chin-Hsuan Lin ◽  
Chen-I Yang

Two new dicarboxylate-based three-dimensional cobalt coordination polymers, [Co(Me2mal)(bpe)0.5(H2O)]n (1) and [Co(Me2mal)(bpe)0.5]n (2), were synthesized from dimethylmalonic acid (H2-Me2mal) in temperature-controlled solvothermal reactions. Lower temperatures (60–80 °C) favored the formation of 1, while higher temperatures (120 °C) favored the production of 2. Compound 1 is comprised of Co(II) corrugated layers linked by syn–anti carboxylate bridges from the Me2mal2− ligands and pillared through bis-monodentate bpe groups. Compound 2 is comprised of a three-dimensional network involving one-dimensional Co–carboxylate chains bonded by antisymmetric µ4-Me2mal2− ligands and aligned parallel to the [001] direction. The solvothermal retreatment of crystalline samples of 1 in a DMF/H2O solvent at 120 °C allowed the structural reassembly, with complete conversion within 2 over 48 h. Magnetic analyses revealed that compound 1 exhibits both spin-orbital coupling and antiferromagnetic interactions through a syn–anti carboxylate (Me2mal2−) bridge exchange pathway [Co–Co separation of 5.478 Å] and compound 2 showed a ferromagnetic interaction resulting from the short Co–Co separation (3.150 Å) and the small Co–O–Co bridging angles (98.5° and 95.3°) exchange pathway which was provided by µ4-Me2mal2− bridging ligand.


2015 ◽  
Vol 71 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Ja-Min Gu ◽  
Seong Huh ◽  
Chul-Hyun Yo ◽  
Youngmee Kim

Two new one-dimensional CuIIcoordination polymers (CPs) containing theC2h-symmetric terphenyl-based dicarboxylate linker 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate (3,3′-TPDC), namelycatena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), andcatena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours,i.e.violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3′-TPDC bridging ligands coordinate the CuIIions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutuallytranspositions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).


2007 ◽  
Vol 62 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Sabine Strobel ◽  
Thomas Schleid

Single crystals of the ternary copper(I) lanthanide(III) sulfides with the composition CuMS2 (M = Dy - Lu) are formed within seven days at 750 °C by oxidation of elemental copper and lanthanide metal with sulfur (molar ratio: 1 : 1 : 2, evacuated silica tubes) in equimolar quantities of CsCl, CsBr or CsI as fluxing agents. The CuYS2-type crystal structures (orthorhombic, Pnma, Z = 4; e. g. CuDyS2: a = 1342.51(9), b = 397.96(3), c = 627.43(5) pm and CuLuS2: a = 1315.06(9), b = 391.04(3), c = 624.18(5) pm) exhibit chains of cis edge-linked [CuS4]7− tetrahedra with the composition 1∞{[Cu(S1)3/3(S2)1/1]3−} which run parallel to [010] and show hexagonal rod packing. Charge compensation and three-dimensional interconnection of these anionic strands occur via octahedrally coordinated M3+ cations surrounded by six S2− anions. These [MS6]9− octahedra share vertices and edges to form a three-dimensional network 3∞{[M(S1)3/3(S2)3/3]−} with the ramsdellite-type topology of γ-MnO2. The metal sulfur distances within the [MS6] polyhedra are very similar (M-S: 263 - 279 pm), whereas those within the [CuS4] units cover the ranges 227 - 230 (Cu-S2) and 231 - 233 (Cu-S1) as well as 250 - 252 pm (Cu-S1′, 2×). The present work is the first comprehensive X-ray single crystal diffraction study of the complete isotypic B-type series CuMS2 (M = Dy - Lu).


2019 ◽  
Vol 75 (10) ◽  
pp. 1432-1435
Author(s):  
Yukiyasu Kashiwagi ◽  
Koji Kubono ◽  
Toshiyuki Tamai

The reaction of bis(3-oxo-1,3-diphenylprop-1-enolato-κ2 O,O′)zinc(II), [Zn(dbm)2], with tris[4-(pyridin-3-yl)phenyl]amine (T3PyA) in tetrahydrofuran (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O} n . The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octahedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H...π interactions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H...π interactions into a three-dimensional network. The solvate THF molecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).


Sign in / Sign up

Export Citation Format

Share Document