Square network based upon the molecular salt of the tetraprotonated photoproduct rtct-tetrakis(pyridin-4-yl)cyclobutane and the sulfate anion

Author(s):  
Carlos L. Santana ◽  
Eric W. Reinheimer ◽  
Ryan H. Groeneman

The formation and crystal structure of a hydrated molecular salt that results in a square network is reported. The crystalline solid is based upon the tetraprotonated photoproduct rtct-tetrakis(pyridin-4-yl)cyclobutane (4H- rtct -TPCB)4+ along with two sulfate anions (SO4 2−) and eight waters of hydration, namely, 4,4′,4′′,4′′′-(cyclobutane-1,2,3,4-tetrayl)tetrapyridinium bis(sulfate) octahydrate, C24H24N4 4+·2SO4 2−·8H2O. The fully protonated photoproduct acts as a four-connecting node within the square network by engaging in four charge-assisted N+—H...O hydrogen bonds to the sulfate anion. The observed hydrogen-bonding pattern in this square network is akin to T-silica, which is a metastable form of SiO2. The included water molecules and sulfate anions engage in numerous O—H...O hydrogen bonds to form various hydrogen-bonded ring structures.

IUCrData ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Matthias Weil

In comparison with the previous structure determination of poly[diaquadi-μ-formato-nickel(II)], [Ni(HCOO)2(H2O)2]n, based on Weissenberg film data [Krogmann & Mattes (1963).Z. Kristallogr.118, 291–302], the current redetermination from modern CCD data revealed the positions of the H atoms, thus making a detailed description of the hydrogen-bonding pattern possible. Both Ni2+cations in the crystal structure are located on inversion centres and are octahedrally coordinated. One Ni2+cation is bound to six O atoms of six formate anions whereas the other Ni2+cation is bound to four O atoms of water molecules and to two formate O atoms. In this way, the formate anions bridge the two types of Ni2+cations into a three-dimensional framework. O—H...O hydrogen bonds of medium strength between water molecules and formate O atoms consolidate the packing.


Author(s):  
Chatphorn Theppitak ◽  
Kittipong Chainok

The crystal structure of the title compound, cadmium sulfate monohydrate or poly[(μ2-aqua)(μ4-sulfato)cadmium], was redetermined based on modern CMOS (complementary metal oxide silicon) data. In comparison with the previous study [Bregeault & Herpin (1970).Bull. Soc. Fr. Mineral. Cristallogr.93, 37–42], all non-H atoms were refined with anisotropic displacement parameters and the hydrogen-bonding pattern unambiguously established due to location of the hydrogen atoms. In addition, a significant improvement in terms of precision and accuracy was achieved. In the crystal, the Cd2+cation is coordinated by four O atoms of four sulfate anions and two O atoms of water molecules, forming a distorted octahedraltrans-[CdO6] polyhedron. Each sulfate anion bridges four Cd2+cations and each water molecule bridges two Cd2+cations, leading to the formation of a three-dimensional framework, with Cd...Cd separations in the range 4.0757 (2)–6.4462 (3) Å. O—H...O hydrogen-bonding interactions of medium strength between the coordinating water molecules and sulfate anions consolidate the crystal packing.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


2010 ◽  
Vol 66 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Maxime A. Siegler ◽  
Jacob H. Prewitt ◽  
Steven P. Kelley ◽  
Sean Parkin ◽  
John P. Selegue ◽  
...  

Five structures of co-crystals grown from aqueous solutions equimolar in 15-crown-5 (or 15C5) and [M(H2O)6](NO3) n , M = Al3+, Cr3+ and Pd2+, are reported. The hydrogen-bonding patterns in all are similar: metal complexes including the fragment trans-H2O—M—OH2 alternate with 15C5 molecules, to which they are hydrogen bonded, to form stacks. A literature survey shows that this hydrogen-bonding pattern is very common. In each of the two polymorphs of the compound [Al(H2O)6](NO3)3·15C5·4H2O there are two independent cations; one forms hydrogen bonds directly to the 15C5 molecules adjacent in the stack, while the other cation is hydrogen-bonded to two water molecules that act as spacers in the stack. These stacks are then crosslinked by hydrogen bonds formed by the three nitrate counterions and the three lattice water molecules. The hydrogen-bonded stacks in [Cr(H2O)5(NO3)](NO3)2·1.5(15C5)·H2O are discrete rather than infinite; each unit contains two Cr3+ complex cations and three 15C5 molecules. These units are again crosslinked by the uncoordinated nitrate ions and a lattice water molecule. In [Pd(H2O)2(NO3)2]·15C5 the infinite stacks are electrically neutral and are not crosslinked. In [Pd(H2O)2(NO3)2]·2(15C5)·2H2O·2HNO3 a discrete, uncharged unit containing one Pd complex and two 15C5 molecules is `capped off' at either end by a lattice water molecule and an included nitric acid molecule. In all five structures the infinite stacks or discrete units form an array that is at least approximately hexagonal.


Author(s):  
Ping Su ◽  
Xue-gang Song ◽  
Ren-qiang Sun ◽  
Xing-man Xu

The asymmetric unit of the title organic salt [systematic name: 1H-pyrazol-2-ium 2,4,6-trinitrophenolate–1H-pyrazole (1/1)], H(C3H4N2)2+·C6H2N3O7−, consists of one picrate anion and one hydrogen-bonded dimer of a pyrazolium monocation. The H atom involved in the dimer N—H...N hydrogen bond is disordered over both symmetry-unique pyrazole molecules with occupancies of 0.52 (5) and 0.48 (5). In the crystal, the component ions are linked into chains along [100] by two different bifurcated N—H...(O,O) hydrogen bonds. In addition, weak C—H...O hydrogen bonds link inversion-related chains, forming columns along [100].


Author(s):  
L. Vella-Zarb ◽  
U. Baisch

The crystal structure of the hexahydrate co-crystal of gallic acid and caffeine, C7H6O5·3C8H10N4O2·6H2O or GAL3CAF·6H2O, is a remarkable example of the importance of hydrate water acting as structural glue to facilitate the crystallization of two components of different stoichiometries and thus to compensate an imbalance of hydrogen-bond donors and acceptors. The water molecules provide the additional hydrogen bonds required to form a crystalline solid. Whereas the majority of hydrogen bonds forming the intermolecular network between gallic acid and caffeine are formed by crystal water, only one direct classical hydrogen bond between two molecules is formed between the carboxylic oxygen of gallic acid and the carbonyl oxygen of caffeine with d(D...A) = 2.672 (2) Å. All other hydrogen bonds either involve crystal water or utilize protonated carbon atoms as donors.


Author(s):  
David Z. T. Mulrooney ◽  
Helge Müller-Bunz ◽  
Tony D. Keene

The reaction of 1,5-dibromopentane with urotropine results in crystals of the title molecular salt, 5-bromourotropinium bromide [systematic name: 1-(5-bromopentyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane bromide], C11H22BrN4 +·Br− (1), crystallizing in space group P21/n. The packing in compound 1 is directed mainly by H...H van der Waals interactions and C—H...Br hydrogen bonds, as revealed by Hirshfeld surface analysis. Comparison with literature examples of alkylurotropinium halides shows that the interactions in 1 are consistent with those in other bromides and simple chloride and iodide species.


2007 ◽  
Vol 63 (11) ◽  
pp. o4249-o4250
Author(s):  
Hoong-Kun Fun ◽  
Shyamaprosad Goswami ◽  
Annada C. Maity ◽  
Sibaprasad Maity ◽  
Suchada Chantrapromma

In the title compound, C14H19N5O4·H2O, the 3,4-dihydropteridine ring system deviates sigificantly from planarity, the dihedral angle between the mean planes of the two rings being 3.93 (9)°. Intramolecular N—H...O hydrogen bonding generates an S(6) ring motif. The water molecule forms O—H...O and O—H...N intramolecular hydrogen bonds with the substituted pteridine molecule. In the crystal structure, the substituted pteridine molecules are linked by N—H...N hydrogen bonds into chains running along the c direction. These chains are further connected to the water molecules by N—H...O, O—H...O and O—H...N hydrogen bonds to form two-dimensional networks parallel to the bc plane. The crystal structure is stabilized by intra- and intermolecular N—H...O, N—H...N, O—H...O and O—H...N hydrogen bonds, together with weak C—H...O and C—H...N intra- and intermolecular interactions. C—H...π interactions are also observed.


2015 ◽  
Vol 71 (12) ◽  
pp. 1444-1446 ◽  
Author(s):  
Tamara J. Lukianova ◽  
Vasyl Kinzhybalo ◽  
Adam Pietraszko

In the title molecular salt, 3C5H12N+·HSO4−·SO42−, each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O—H...O hydrogen bond. The packing also features a number of N—H...O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.


2014 ◽  
Vol 70 (9) ◽  
pp. 157-160 ◽  
Author(s):  
Ana María Atria ◽  
Maria Teresa Garland ◽  
Ricardo Baggio

4,4′-(Disulfanediyl)dibutanoic acid (dtba) and 4,4′-bipyridine (4,4′-bpy) crystallize in an 1:1 ratio, leading to the title co-crystal with composition C8H14O4S2·C10H8N2. A distinctive feature of the crystal structure is the geometry of the dtba moiety, which appears to be stretched [with a 9.98 (1) Å span between outermost carbons] and acts as an hydrogen-bonding connector, forming linear chains along [-211] with the 4,4′-bpy moiety by way of O—H...N hydrogen bonds and C—H...O interactions. The influence of the molecular shape on the hydrogen-bonding pattern is analysed by comparing the title compound and two other 4,4′-bpy co-crystals with closely related molecules of similar formulation but different geometry, showing the way in which this correlates with the packing arrangement.


Sign in / Sign up

Export Citation Format

Share Document