scholarly journals Capturing structural dynamics of materials by picosecond X-ray pulses

2014 ◽  
Vol 70 (a1) ◽  
pp. C764-C764
Author(s):  
Shin-ichi Adachi ◽  
Tokushi Sato ◽  
Shunsuke Nozawa

Picosecond time-resolved X-ray techniques, such as time-resolved X-ray diffraction, scattering, and spectroscopy, utilize the pulsed nature of synchrotron radiation from storage rings, and are becoming general and powerful tools to explore structural dynamics in various materials. This method enables to produce "atomic structural movies" at picosecond temporal resolution. It will be fascinating to apply such capability to capture ultrafast structural dynamics in advanced materials of strongly-correlated electron systems, photochemical catalytic reaction dynamics in liquid or on solid surface, light-induced response of photosensitive proteins, etc. Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK), Tsukuba, Japan is a 6.5-GeV electron storage ring dedicated for single-bunch operation and is suitable for the picosecond time-resolved X-ray studies. An in-vacuum undulator beamline NW14A at the PF-AR was designed and constructed to conduct a wide variety of time-resolved X-ray measurements, such as time-resolved X-ray diffraction, scattering and spectroscopy [1]. Successful examples of time-resolved X-ray studies applied to materials science will be presented in the talk.

2004 ◽  
Author(s):  
Kazutaka G. Nakamura ◽  
Hiroaki Kishimura ◽  
Yoichiro Hironaka ◽  
Ken-ichi Kondo

2018 ◽  
Vol 941 ◽  
pp. 943-948
Author(s):  
Katja Hauschildt ◽  
Andreas Stark ◽  
Hilmar Burmester ◽  
Ursula Tietze ◽  
Norbert Schell ◽  
...  

TiAl alloys are increasingly used as a lightweight material, for example in aero engines, which also leads to the requirement for suitable repair techniques. Transient liquid phase bonding is a promising method for the closure of cracks (in non-critical or non-highly loaded areas). The brazing solder Ti-24Ni was investigated for brazing the alloy Ti-45Al-5Nb-0.2B-0.2C (in at. %). After brazing, the joint exhibits different microstructures and phase compositions. The transient liquid phase bonding process was investigated in the middle of the joint region in situ to acquire time resolved information of the phases, their development, and thus the brazing process. These investigations were performed using high-energy X-ray diffraction at the “High-Energy Materials Science” beamline HEMS, located at the synchrotron radiation facility PETRA III at DESY in Hamburg, Germany. For this, we used an induction furnace, which is briefly described here. During the analysis of the diffraction data with Rietveld refinement, the amount of liquid was refined with Gaussian peaks and thus could be quantified. Furthermore, while brazing four different phases occurred in the middle of the joint region over time. Additionally, the degree of ordering of the βo phase was determined with two ideal stoichiometric phases (completely ordered and disordered). Altogether, the phase composition changed clearly over the first six hours of the brazing process.


Author(s):  
A. H. Chin ◽  
R. W. Schoenlein ◽  
T. E. Glover ◽  
P. Balling ◽  
W. P. Leemans ◽  
...  

1999 ◽  
Vol 83 (2) ◽  
pp. 336-339 ◽  
Author(s):  
A. H. Chin ◽  
R. W. Schoenlein ◽  
T. E. Glover ◽  
P. Balling ◽  
W. P. Leemans ◽  
...  

2012 ◽  
Vol 116 (21) ◽  
pp. 11842-11847 ◽  
Author(s):  
Sheng Peng ◽  
John S. Okasinski ◽  
Jonathan D. Almer ◽  
Yang Ren ◽  
Lin Wang ◽  
...  

2004 ◽  
Vol 22 (3) ◽  
pp. 285-288 ◽  
Author(s):  
KAZUTAKA G. NAKAMURA ◽  
YOICHIRO HIRONAKA ◽  
HIDETAKA KAWANO ◽  
HIROAKI KISHIMURA ◽  
KEN-ICHI KONDO

Ultrashort pulsed hard X rays are generated by focusing an intense femtosecond laser beam onto metal targets. Kαemissions are obtained from a Cu target. Picosecond time-resolved X-ray diffraction is performed to investigate structural dynamics of laser-shocked semiconductors using the laser plasma X-ray pulses. Lattice deformation associated with shock-wave propagation is directly observed. Evolution of strain profiles inside the crystal is determined without disturbance from the time-resolved X-ray diffraction patterns.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 166-169 ◽  
Author(s):  
Henning F. Poulsen ◽  
Dorte Juul Jensen ◽  
Gavin B.M. Vaughan

AbstractThree-dimensional x-ray diffraction (3DXRD) microscopy is a tool for fast and nondestructive characterization of the individual grains, subgrains, and domains inside bulk materials. The method is based on diffraction with very penetrating hard x-rays (E ≥ 50 keV), enabling 3D studies of millimeter-to-centimeter-thick specimens.The position, volume, orientation, and elastic and plastic strain can be derived for hundreds of grains simultaneously. Furthermore, by applying novel reconstruction methods, 3D maps of the grain boundaries can be generated. The 3DXRD microscope in use at the European Synchrotron Radiation Facility in Grenoble, France, has a spatial resolution of ∼5 μm and can detect grains as small as 150 nm. The technique enables, for the first time, dynamic studies of the individual grains within polycrystalline materials. In this article, some fundamental materials science applications of 3DXRD are reviewed: studies of nucleation and growth kinetics during recrystallization, recovery, and phase transformations, as well as studies of polycrystal deformation.


Sign in / Sign up

Export Citation Format

Share Document