Electrochemical Oxidation and Reduction Processes of Platinum Nanoparticles Probed by Time-resolved High-energy X-ray Diffraction and X-ray Absorption Spectroscopy

2020 ◽  
Author(s):  
Paulo F M de Oliveira ◽  
Adam Michalchuk ◽  
Ana de Oliveira Guilherme Buzanich ◽  
Ralf Bienert ◽  
Roberto M. Torresi ◽  
...  

<div>The development of time-resolved in situ approaches for monitoring mechanochemical</div><div>transformations has revolutionized the field of mechanochemistry. Currently, the established in</div><div>situ approaches greatly limit the scope of investigations that are possible. Here we develop a new</div><div>approach to simultaneously follow the evolution of bulk atomic and electronic structure during a</div><div>mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based</div><div>X-ray methods: X-ray absorption spectroscopy and X-ray diffraction. We apply this method to</div><div>investigate the bottom-up mechanosynthesis of technologically important Au nanoparticles in the</div><div>presence of three different reducing agents. Moreover, we demonstrate how X-ray absorption</div><div>spectroscopy offers unprecedented insight into the early stage generation of growth species (e.g.</div><div>monomers and clusters), which lead to the subsequent formation of nanoparticles. These</div><div>processes are beyond the detection capabilities of diffraction methods. The approach is general,</div><div>and not limited to monitoring NP mechanosynthesis. This combined X-ray approach paves the</div><div>way to new directions in mechanochemical research of advanced electronic materials.</div>


2020 ◽  
Author(s):  
Paulo F M de Oliveira ◽  
Adam Michalchuk ◽  
Ana de Oliveira Guilherme Buzanich ◽  
Ralf Bienert ◽  
Roberto M. Torresi ◽  
...  

<div>The development of time-resolved in situ approaches for monitoring mechanochemical</div><div>transformations has revolutionized the field of mechanochemistry. Currently, the established in</div><div>situ approaches greatly limit the scope of investigations that are possible. Here we develop a new</div><div>approach to simultaneously follow the evolution of bulk atomic and electronic structure during a</div><div>mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based</div><div>X-ray methods: X-ray absorption spectroscopy and X-ray diffraction. We apply this method to</div><div>investigate the bottom-up mechanosynthesis of technologically important Au nanoparticles in the</div><div>presence of three different reducing agents. Moreover, we demonstrate how X-ray absorption</div><div>spectroscopy offers unprecedented insight into the early stage generation of growth species (e.g.</div><div>monomers and clusters), which lead to the subsequent formation of nanoparticles. These</div><div>processes are beyond the detection capabilities of diffraction methods. The approach is general,</div><div>and not limited to monitoring NP mechanosynthesis. This combined X-ray approach paves the</div><div>way to new directions in mechanochemical research of advanced electronic materials.</div>


ACS Catalysis ◽  
2012 ◽  
Vol 2 (11) ◽  
pp. 2371-2376 ◽  
Author(s):  
Lindsay R. Merte ◽  
Farzad Behafarid ◽  
Daniel J. Miller ◽  
Daniel Friebel ◽  
Sangwan Cho ◽  
...  

2009 ◽  
Vol 1193 ◽  
Author(s):  
B. L. Metcalfe ◽  
S. K. Fong ◽  
L. A. Gerrard ◽  
I. W. Donald ◽  
E. S. Welch ◽  
...  

AbstractThe choice of surrogate for plutonium oxide for use during the initial stages of research into the immobilization of intermediate level pyrochemical wastes containing plutonium andamericium oxides in a calcium phosphate host has been investigated by powder X-ray diffraction and X-ray absorption spectroscopy. Two non-radioactive surrogates, hafnium oxide and cerium oxide, together with radioactive thorium oxide were compared. Similarities in behaviour were observed for all three surrogates when calcined at the lowest temperature, 750°C but differences became more pronounced as the calcination temperature was increased to 950°C. Although some reaction occurred between all the surrogates and the host to form a substituted whitlockite phase, increasing the temperature led to a significant increase in the cerium reaction and the formation of an additional phase, monazite. Additionally it was observed that the cerium became increasingly trivalent at higher temperatures.


Author(s):  
Sergey Koroidov ◽  
Anna Winiwarter ◽  
Oscar Alfonso Diaz-Morales ◽  
Mikaela Gorlin ◽  
Joakim Halldin Stenlid ◽  
...  

Controlled electrochemical oxidation of hydrocarbons to desired products is an attractive approach in catalysis. Here we study the electrochemical propene oxidation under operando conditions using Pd L‐edge X‐ray absorption spectroscopy...


Sign in / Sign up

Export Citation Format

Share Document