Phase Transformations in the Brazing Joint during Transient Liquid Phase Bonding of a γ-TiAl Alloy Studied with In Situ High-Energy X-Ray Diffraction

2018 ◽  
Vol 941 ◽  
pp. 943-948
Author(s):  
Katja Hauschildt ◽  
Andreas Stark ◽  
Hilmar Burmester ◽  
Ursula Tietze ◽  
Norbert Schell ◽  
...  

TiAl alloys are increasingly used as a lightweight material, for example in aero engines, which also leads to the requirement for suitable repair techniques. Transient liquid phase bonding is a promising method for the closure of cracks (in non-critical or non-highly loaded areas). The brazing solder Ti-24Ni was investigated for brazing the alloy Ti-45Al-5Nb-0.2B-0.2C (in at. %). After brazing, the joint exhibits different microstructures and phase compositions. The transient liquid phase bonding process was investigated in the middle of the joint region in situ to acquire time resolved information of the phases, their development, and thus the brazing process. These investigations were performed using high-energy X-ray diffraction at the “High-Energy Materials Science” beamline HEMS, located at the synchrotron radiation facility PETRA III at DESY in Hamburg, Germany. For this, we used an induction furnace, which is briefly described here. During the analysis of the diffraction data with Rietveld refinement, the amount of liquid was refined with Gaussian peaks and thus could be quantified. Furthermore, while brazing four different phases occurred in the middle of the joint region over time. Additionally, the degree of ordering of the βo phase was determined with two ideal stoichiometric phases (completely ordered and disordered). Altogether, the phase composition changed clearly over the first six hours of the brazing process.

Author(s):  
Alireza Zaheri ◽  
Mohammadreza Farahani ◽  
Alireza Sadeghi ◽  
Naser Souri

The bonding strength, and microstructures of Cu and Al couples using metallic powders as interlayer during transient liquid phase bonding (TLP bonding) were investigated. The interfacial morphologies and microstructures were studied by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. First, to explore the optimum bonding time and temperature, nine samples were bonded without interlayers in a vacuum condition. Mechanical test results indicated that bonding at 560°C in 20 min returns the highest bond strength (84% of Al). This bonding condition was used to join ten samples with powder interlayers. Powders were prepared by mixing different combinations of Cu, Al (+Fe nanoparticles) and Zn. In the bonding zone, different Cu9Al4, CuAl, and CuAl2 intermetallic co-precipitate. The strongest bonding is formed in the sample with the 70Al (+Fe)-30Cu powder interlayer. Powder interlayers present thinner and more uniform intermetallic layers at the joint interface.


2013 ◽  
Vol 829 ◽  
pp. 136-140
Author(s):  
Omid Bahman Dehkordi ◽  
Ali Mohamad Hadian

Bismuth oxide, due to its low melting point was selected as filler for joining alumina to alumina using Transient Liquid Phase (TLP) method. For this purpose a thin layer of bismuth oxide was placed as an interlayer between the ceramic bodies. To study the effect of time and temperature on the mechanical properties of the joined samples, the joining tests were carried out in 900, 1000 and 1100°C for various times. The mechanical properties of the joined samples were measured using shear testing method. To investigate the microstructure of the joining area, the cross section ofthe joints were studied using scanning electron microscope (SEM) and X-ray diffraction method. The results showed that longer joining times results in higher mechanical properties of the joints. The highest joint strength of about 80 MPa was obtained for the sample joined in 900°C for 10hour.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2010 ◽  
Vol 504 ◽  
pp. S155-S158 ◽  
Author(s):  
J. Bednarcik ◽  
C. Curfs ◽  
M. Sikorski ◽  
H. Franz ◽  
J.Z. Jiang

2011 ◽  
Vol 21 (15) ◽  
pp. 5604 ◽  
Author(s):  
Zonghai Chen ◽  
Yang Ren ◽  
Yan Qin ◽  
Huiming Wu ◽  
Shengqian Ma ◽  
...  

2000 ◽  
Vol 639 ◽  
Author(s):  
Ryuhei Kimura ◽  
Kiyoshi Takahashi ◽  
H. T. Grahn

ABSTRACTAn investigation of the growth mechanism for RF-plasma assisted molecular beam epitaxy of cubic GaN films using a nitrided AlGaAs buffer layer was carried out by in-situ reflection high energy electron diffraction (RHEED) and high resolution X-ray diffraction (HRXRD). It was found that hexagonal GaN nuclei grow on (1, 1, 1) facets during nitridation of the AlGaAs buffer layer, but a highly pure, cubic-phase GaN epilayer was grown on the nitrided AlGaAs buffer layer.


2021 ◽  
Vol 118 (13) ◽  
pp. 132903
Author(s):  
Mao-Hua Zhang ◽  
Changhao Zhao ◽  
Lovro Fulanović ◽  
Jürgen Rödel ◽  
Nikola Novak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document