scholarly journals Crystal structure of bis(1,4-diazabicyclo[2.2.2]octan-1-ium) thiosulfate dihydrate

Author(s):  
Gorgui Awa Seck ◽  
Aboubacary Sene ◽  
Libasse Diop ◽  
Thierry Maris

The crystal structure of the hydrated title salt, 2C6H13N2+·S2O32−·2H2O, contains a centrosymmetric cyclic motif of eight hydrogen-bonded molecular subunits. Two DABCOH+cations (DABCO = 1,4-diazabicyclo[2.2.2]octane) are linked to two water molecules and two thiosulfate anionsviaO—H...N and O—H...O hydrogen bonds, respectively. Two other water molecules close the cyclic motif through O—H...O contacts to the first two water molecules and to the two thiosulfate anions. A second pair of DABCOH+cations is N—H...O hydrogen bonded to the two anions and is pendant to the ring. Adjacent cyclic motifs are bridged into a block-like arrangement extending along [100] through O—H...O interactions involving the second pair of water molecules and neighbouring thiosulfate anions.

2006 ◽  
Vol 62 (4) ◽  
pp. o1529-o1531 ◽  
Author(s):  
Li-Ping Zhang ◽  
Long-Guan Zhu

In the crystal structure of the title organic proton-transfer complex, 2C12H11N2 +·C7H4O5S2−·3H2O, the cations form one-dimensional chains via intermolecular N—H...N hydrogen bonds and these chains, in turn, form a two-dimensional network through π–π stacking interactions. In addition, the anions and water molecules are connected into a two-dimensional hydrogen-bonded network through intermolecular O—H...O hydrogen bonds. The two motifs result in sheets of cations and anions stacked alternately.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 439 ◽  
Author(s):  
Verónica Jornet-Mollá ◽  
Carlos Giménez-Saiz ◽  
Francisco Romero

In this paper, we report on the synthesis, crystal structure, and photomagnetic properties of the spin-crossover salt of formula [Fe(bpp)2](C6H4NO2)2·4H2O (1·4H2O) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; C6H4NO2− = nicotinate anion). This compound exhibits a 3D supramolecular architecture built from hydrogen bonds between iron(II) complexes, nicotinate anions, and water molecules. As synthesized, the hydrated material is low-spin and desolvation triggers a low-spin (LS) to high-spin (HS) transformation. Anhydrous phase 1 undergoes a partial spin crossover (T1/2= 281 K) and a LS to HS photomagnetic conversion with a T(LIESST) value of 56 K.


2003 ◽  
Vol 59 (11) ◽  
pp. m429-m431 ◽  
Author(s):  
Jaromír Marek ◽  
Zdeněk Trávníček ◽  
Pavel Kopel

The title compound, [Mn(C12H8N2)2(H2O)2](C4H4O4S)·[Mn(C4H4O4S)(C12H8N2)2]·13H2O, contains one dianion of thiodiglycolic acid (tdga2−) and two independent manganese(II) moieties, viz. [Mn(phen)2(H2O)2]2+ and [Mn(tdga)(phen)2], where phen is 1,10-phenanthroline. The MnII atoms are octahedrally coordinated by four N atoms of two bidentate phen ligands [Mn—N = 2.240 (2)–2.3222 (19) Å] and either two water O atoms or two tdga carboxyl O atoms [Mn—O = 2.1214 (17)–2.1512 (17) Å]. The tdga ligand chelates as an O,O′-bidentate ligand, forming an eight-membered ring with one Mn atom. The free tdga2− dianion is hydrogen bonded to an [Mn(phen)2(H2O)2]2+ ion, with O...O distances of 2.606 (2) and 2.649 (2) Å. The crystal structure is further stabilized by an extensive network of hydrogen bonds involving 13 water molecules.


2019 ◽  
Vol 75 (11) ◽  
pp. 1465-1470
Author(s):  
Viktoria M. Zemtsova ◽  
Alexey Yu. Fedorov ◽  
Elizaveta A. Fedorova ◽  
Callum Boa ◽  
Sergey G. Arkhipov ◽  
...  

We report the crystal structure and crystallization conditions of a first hydrated form of metacetamol (a hemihydrate), C8H9NO2·0.5H2O. It crystallizes from metacetamol-saturated 1:1 (v/v) water–ethanol solutions in a monoclinic structure (space group P21/n) and contains eight metacetamol and four water molecules per unit cell. The conformations of the molecules are the same as in polymorph II of metacetamol, which ensures the formation of hydrogen-bonded dimers and R 2 2(16) ring motifs in its crystal structure similar to those in polymorph II. Unlike in form II, however, these dimers in the hemihydrate are connected through water molecules into infinite hydrogen-bonded molecular chains. Different chains are linked to each other by metacetamol–water and metacetamol–metacetamol hydrogen bonds, the latter type being also present in polymorph I. The overall noncovalent network of the hemihydrate is well developed and several types of hydrogen bonds are responsible for its formation.


2012 ◽  
Vol 68 (8) ◽  
pp. o283-o287 ◽  
Author(s):  
Vasily S. Minkov ◽  
Elena V. Boldyreva

N,N-Dimethylglycine, C4H9NO2, and its hemihydrate, C4H9NO2·0.5H2O, are discussed in order to follow the effect of the methylation of the glycine amino group (and thus its ability to form several hydrogen bonds) on crystal structure, in particular on the possibility of the formation of hydrogen-bonded `head-to-tail' chains, which are typical for the crystal structures of amino acids and essential for considering amino acid crystals as mimics of peptide chains. Both compounds crystallize in centrosymmetric space groups (PbcaandC2/c, respectively) and have twoN,N-dimethylglycine zwitterions in the asymmetric unit. In the anhydrous compound, there are no head-to-tail chains but the zwitterions formR44(20) ring motifs, which are not bonded to each other by any hydrogen bonds. In contrast, in the crystal structure ofN,N-dimethylglycinium hemihydrate, the zwitterions are linked to each other by N—H...O hydrogen bonds into infiniteC22(10) head-to-tail chains, while the water molecules outside the chains provide additional hydrogen bonds to the carboxylate groups.


2012 ◽  
Vol 68 (4) ◽  
pp. o1204-o1204 ◽  
Author(s):  
Sanaz Khorasani ◽  
Manuel A. Fernandes

In the title hydrated salt, C8H18N+·C4H5O4−·H2O, the cyclooctyl ring of the cation is disordered over two positions in a 0.833 (3):0.167 (3) ratio. The structure contains various O—H.·O and N—H...O interactions, forming a hydrogen-bonded layer of molecules perpendicular to thecaxis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water molecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of molecules along thebaxis. In addition, each hydrogen succinate anion hydrogen bonds to two water molecules and the ammonium cation.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2017 ◽  
Vol 73 (11) ◽  
pp. 1599-1602 ◽  
Author(s):  
Matimon Sangsawang ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]nor [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaIheterobimetallic coordination polymer. The asymmetric unit consists of one CdIIatom, two NaIatoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdIIatom exhibits a seven-coordinate geometry, while the NaIatoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connectedviachelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H...O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.


Author(s):  
Hongyang Zhang ◽  
Ge Feng ◽  
Alexander S. Filatov ◽  
Richard F. Jordan

In the title compound, C21H21O5PS·H2O·CH2Cl2, the phosphonium–sulfonate zwitterion has the acidic H atom located on the P atom rather than the sulfonate group. The S—O bond lengths [1.4453 (15)–1.4521 (14) Å] are essentially equal. In the crystal, the water molecules bridge two zwitterionsviaOwater—H...Osulfonatehydrogen bonds into a centrosymmetric dimer. The dimers are further linked by weak CAryl—H...Osulfonatehydrogen bonds into chains extending along [100]. The PH+group is not involved in intermolecular interactions.


Sign in / Sign up

Export Citation Format

Share Document