partial methylation
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Francesca Menghi ◽  
Kalyan Banda ◽  
Pooja Kumar ◽  
Robert Straub ◽  
Lacey Dobrolecki ◽  
...  

Loss of homologous recombination repair (HRR) via germline and somatic BRCA1 or BRCA2 gene mutations and via BRCA1 promoter methylation has been associated with better response to platinum agents and PARP inhibitors, in both triple negative breast cancer (TNBC) and ovarian carcinoma (OvCa). A major conundrum arising from recent clinical studies is why cancers with BRCA1 promoter methylation (BRCA1meth) respond more poorly as compared to those bearing mutations in BRCA1 and BRCA2 (BRCAmut), given the biologically equivalent HRR deficiency in both states. We dissected this problem through detailed genomic analyses of primary TNBC and OvCa cohorts, as well as experimentation with patient-derived xenograft (PDX) models and genetically engineered cell lines. Using the precise genomic scar of the tandem duplicator phenotype as a precise genomic indicator of BRCA1 deficiency, we found that, in all cohorts, BRCA1mut and BRCA1meth cancers share an equivalent degree of BRCA1-linked genomic rearrangements. Nonetheless, we consistently found that patients with BRCAmut cancers, but not those with BRCA1meth cancers, had significantly better response outcomes when compared to those with BRCA proficient cancers. When fully promoter methylated BRCA1 PDX TNBCs were exposed to a single short course of platinum chemotherapy an unmethylated BRCA1 promoter allele emerged in resultant tumors associated with an increase in BRCA1 expression. A separate analysis of PDXs derived from treatment naive TNBCs featured complete methylation of the BRCA1 promoter, whereas those derived from post-chemotherapy TNBCs invariably had only partial methylation. PDXs with partial methylation were significantly associated with lower response rates to in vivo platinum-based therapy compared to those with complete promoter methylation. Using single cell clonal expansions from a partially BRCA1meth PDX, we confirmed that the reduced level of methylation was due to the demethylation of one of the BRCA1 promoter alleles and not to the outgrowth of a nonmethylated clone. Clinically, analysis of primary OvCas confirmed that high levels of BRCA1 methylation were significantly associated with reduced BRCA1 gene expression whereas cancers with lower levels of BRCA1 methylation had expression levels approaching those found in BRCA1 proficient cancers. These data suggest that unlike BRCAmut cancers, where HRR deficiency is achieved via mutations that are genetically 'fixed', BRCA1meth cancers are highly adaptive to genotoxin exposure and more likely to recover BRCA1 expression, which may explain their poorer therapeutic response. We further found that an increased immune transcriptional signal, especially an elevated M1 macrophage signature, is associated with enhanced response to platinum-based chemotherapy only in patients with BRCA proficient cancers, in both TNBC and OvCa cohorts underscoring the importance of characterizing molecular heterogeneity to enhance predictive precision in assigning response probabilities in TNBC and OvCa.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Takashi Kawai ◽  
Akihiro Nyuya ◽  
Yoshiko Mori ◽  
Takehiro Tanaka ◽  
Hiroaki Tanioka ◽  
...  

Abstract Background Mutations in the POLE gene result in an ultra-hypermutated phenotype in colorectal cancer (CRC); however, the molecular characterisation of epigenetic alterations remains unclear. We examined the genetic and epigenetic profiles of POLE-mutant CRC to elucidate the clinicopathological features of the associated genetic and epigenetic alterations. Results Tumour tissues (1,013) obtained from a cohort of patients with CRC were analysed to determine associations between the proofreading domain mutations of POLE with various clinicopathological variables, microsatellite instability (MSI) status, BRAF and KRAS mutations, and the methylation status of key regions of MLH1, MGMT, and SFRP2 promoters by calculating the methylation scores (range 0–6). Only four cases (0.4%) exhibited pathogenic POLE hotspot mutations (two p.P286R [c.857C > G], one p.V411L [c.1231G > C], and p.S459F [c.1376C > T] each), which were mutually exclusive to BRAF and KRAS mutations and MSI. CRC patients were divided into four subgroups: patients with POLE mutations (POLE, 0.4%, n = 4), patients with both MSI and extensive methylation in MLH1 (MSI-M, 2.9%, n = 29), patients with MSI but no extensive methylation in MLH1 (MSI-U, 3.6%, n = 36), and patients without MSI (non-MSI, 93.2%, n = 944). The POLE group was younger at diagnosis (median 52 years, P < 0.0001), with frequent right-sided tumour localisation (frequency of tumours located in the right colon was 100%, 93.1%, 36.1%, and 29.9% in POLE, MSI-M, MSI-U, and non-MSI, respectively; P < 0.0001), and was diagnosed at an earlier stage (frequency of stages I–II was 100%, 72.4%, 77.8%, and 46.6% in POLE, MSI-M, MSI-U, and non-MSI, respectively, P < 0.0001). The mean methylation score in POLE was not different from that in MSI-U and non-MSI, but the methylation signature was distinct from that of the other subgroups. Additionally, although the examined number of POLE-mutant tumours was small, the number of CD8-positive cells increased in tumours with partial methylation in the MLH1 gene. Conclusions CRC patients with POLE proofreading mutations are rare. Such mutations are observed in younger individuals, and tumours are primarily located in the right colon. Diagnosis occurs at an earlier stage, and distinct epigenetic alterations may be associated with CD8 cell infiltration.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyunchul Jung ◽  
Hong Sook Kim ◽  
Jeong Yeon Kim ◽  
Jong-Mu Sun ◽  
Jin Seok Ahn ◽  
...  

Abstract Mitotic cell division increases tumour mutation burden and copy number load, predictive markers of the clinical benefit of immunotherapy. Cell division correlates also with genomic demethylation involving methylation loss in late-replicating partial methylation domains. Here we find that immunomodulatory pathway genes are concentrated in these domains and transcriptionally repressed in demethylated tumours with CpG island promoter hypermethylation. Global methylation loss correlated with immune evasion signatures independently of mutation burden and aneuploidy. Methylome data of our cohort (n = 60) and a published cohort (n = 81) in lung cancer and a melanoma cohort (n = 40) consistently demonstrated that genomic methylation alterations counteract the contribution of high mutation burden and increase immunotherapeutic resistance. Higher predictive power was observed for methylation loss than mutation burden. We also found that genomic hypomethylation correlates with the immune escape signatures of aneuploid tumours. Hence, DNA methylation alterations implicate epigenetic modulation in precision immunotherapy.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 279 ◽  
Author(s):  
Alison Pandelache ◽  
Emma K Baker ◽  
Solange M. Aliaga ◽  
Marta Arpone ◽  
Robin Forbes ◽  
...  

: This study describes monozygotic (MZ) male twins with fragile X syndrome (FXS), mosaic for normal size (NS: <44 CGGs), premutation (PM: 55–199 CGG) and full mutation (FM alleles ≥ 200) alleles, with autism. At 4 years of age chromosomal microarray confirmed monozygosity with both twins showing an XY sex complement. Normal size (30 CGG), PM (99 CGG) and FM (388–1632 CGGs) alleles were detected in Twin 1 (T1) by standard polymerase chain reaction (PCR) and Southern blot testing, while only PM (99 CGG) and FM (672–1025) alleles were identified in Twin 2 (T2). At ~5 years, T2 had greater intellectual impairments with a full scale IQ (FSIQ) of 55 and verbal IQ (VIQ) of 59, compared to FSIQ of 62 and VIQ of 78 for T1. This was consistent with the quantitative FMR1 methylation testing, revealing 10% higher methylation at 80% for T2; suggesting that less active unmethylated alleles were present in T2 as compared to T1. AmplideX methylation PCR also identified partial methylation, including an unmethylated NS allele in T2, undetected by standard testing. In conclusion, this report demonstrates significant differences in intellectual functioning between the MZ twins mosaic for NS, PM and FM alleles with partial FMR1 promoter methylation.


2019 ◽  
Vol 18 ◽  
pp. 117693511988051
Author(s):  
Lillian Sun ◽  
Surya Namboodiri ◽  
Emily Chen ◽  
Shuying Sun

DNA methylation plays a significant role in regulating the expression of certain genes in both cancerous and normal breast tissues. It is therefore important to study within-sample co-methylation, ie, methylation patterns between consecutive sites in a chromosome. In this article, we develop 2 new methods to compare co-methylation patterns between normal and cancerous breast samples. In particular, we investigate the co-methylation patterns of 4 different methylation states/levels separately. Using these 2 methods, we focus on addressing the following questions: How often does 1 methylation state change to other methylation states and how is this change dependent on chromosome distance? What co-methylation patterns do normal and cancerous breast samples have? Do genomic sites with different methylation states/levels have different co-methylation patterns? Our results show that cancerous and normal co-methylation patterns are significantly different. We find that this difference exists even when the physical distance of 2 sites are less than 50 bases. Breast cancer cell lines tend to remain in the same methylation state more often than normal samples, especially for the no/low or high/full methylation states. We also find that the co-methylation region lengths for various methylation states (no/low, partial, and high/full methylation states) are very different. For example, the co-methylation region lengths for partial methylation regions are shorter than the unmethylated or fully methylated regions. Our research may provide a deep understanding of co-methylation patterns. These co-methylation patterns will aid in discovering and understanding new methylation events that may be related to novel biomarkers.


2018 ◽  
Author(s):  
Rasmon Kalayasiri ◽  
Korakot Kraijak ◽  
Apiwat Mutirangura ◽  
Michael Maes

AbstractBackgroundThere is evidence that schizophrenia is a neuro-immune disorder. Genes linked to intragenic LINE-1 methylation show a strong association with immune-associated disorders including psychosis. The aim of this study was to examine LINE-1 methylation patterns in paranoid schizophrenia and methamphetamine-induced paranoia, a model for schizophrenia.MethodsThis study recruited 31 patients with paranoid schizophrenia, 94 with methamphetamine-induced paranoia (MIP) and 163 normal controls. LINE-1 methylation patterns were assayed in peripheral blood mononuclear cells and a combined bisulphite restriction analysis and COBRA were used to estimate global methylation (mC) and LINE-1 CpG dinucleotide methylation patterns, namely 2 methylated (mCmC) and 2 unmethylated (uCuC) CpGs and the partially methylated loci mCuC (5’m with 3’u) and uCmC (5’u with 3’m).ResultsPatients with paranoid schizophrenia show highly significant changes in LINE-1 partial methylation patterns, namely a higher % mCuC and lower % uCmC as compared with controls and MIP patients, while the latter show higher % mCuC but lower % uCmC as compared with controls. Higher % mCuC significantly predicts paranoid schizophrenia with a sensitivity of 51.6%, specificity of 97.5% and an area under the ROC curve of 0.895.ConclusionsThe results indicate that a common dysfunction in LINE-1 partial methylation may underpin both paranoid schizophrenia and MIP and that this methylation pattern is significantly more expressed in paranoid schizophrenia than MIP. Reciprocal links between impairments in LINE-1 methylation and neuro-immune and neuro-oxidative pathways may underpin the pathophysiology of both MIP and paranoid schizophrenia.


2018 ◽  
Vol 30 (12) ◽  
pp. 1634 ◽  
Author(s):  
Robert Rekawiecki ◽  
Katarzyna Kisielewska ◽  
Magdalena K. Kowalik ◽  
Jan Kotwica

The aim of this study was to investigate whether the promoters of progesterone receptor isoform A (PGRA) and B (PGRB) are methylated and to determine the percentage of methylation occurring for each isoform. Genomic DNA was isolated from the corpora lutea (CL) and endometrial slices from cows on Days 2–5, 6–10, 11–16 and 17–20 of the oestrous cycle. DNA was bisulphite-converted and amplified using methyl-specific polymerase chain reaction (PCR) with primers that detect both methylated and unmethylated sequences. The determination of the percentage of the methylation was performed using HpaII and MspI restriction enzymes. Methyl-specific PCR showed partial methylation of PGRA and PGRB promoters in the CL and endometrium during the oestrous cycle. Methylation for PGRA was between 15 and 17% and for PGRB was in the range of 6 to 7.7% during the oestrous cycle in the CL. In the endometrium, the methylation for PGRA was between 6 and 7.3% and for PGRB was between 3 and 4.8% during the oestrous cycle. The data obtained indicate that the higher promoter methylation of the PGRA isoform could be a mechanism for regulation of PGRA inhibitory activity against PGRB and, in this way, methylation may influence the regulation of progesterone action in the CL and endometrium.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Şahru Yüksel ◽  
Selma Ozbek Kucukazman ◽  
Gülten Sungur Karataş ◽  
Mehmet Akif Ozturk ◽  
Sasiprapa Prombhul ◽  
...  

Behcet’s Disease (BD) is a multisystem chronic inflammatory disease. The pathology is believed to involve both genetic susceptibility and environmental factors. Hypomethylation leading to activation of interspersed repetitive sequences (IRSs) such as LINE-1 and Alu contributes to the pathologies of autoimmune diseases and cancer. Herein, the epigenetic changes of IRSs in BD were evaluated using combined bisulfite restriction analysis-interspersed repetitive sequences (COBRA-IRS). DNA from neutrophils and peripheral blood mononuclear cells (PBMCs) of BD patients with ocular involvement that were in active or inactive states and healthy controls were used to analyze LINE-1 and Alu methylation levels. For Alu sequences, significant differences were observed in the frequency ofCuCualleles between PBMCs of patients and controls (p=0.03), and between inactive patients and controls (p=0.03). For neutrophils, the frequency ofCuCuwas significantly higher between patients and controls (p=0.006) and between inactive patients and controls (p=0.002). The partial methylation (CuCm+CmCu) frequencies of Alu between inactive patients and control samples also differed (p=0.02). No statistically significant differences for LINE-1 were detected. Thus, changes in the methylation level of IRS elements might contribute to the pathogenesis of BD. The role of Alu transcripts in BD should be investigated further.


Sign in / Sign up

Export Citation Format

Share Document