scholarly journals Two orthorhombic polymorphs of hydromorphone

Author(s):  
Jaroslaw Mazurek ◽  
Marcel Hoffmann ◽  
Ana Fernandez Casares ◽  
D. Phillip Cox ◽  
Mathew D. Minardi ◽  
...  

Conditions to obtain two polymorphic forms by crystallization from solution were determined for the analgesic drug hydromorphone [C17H19NO3; systematic name: (4R,4aR,7aR,12bS)-9-hydroxy-3-methyl-1,2,4,4a,5,6,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-one]. These two crystalline forms, designated as I and II, belong to theP212121orthorhombic space group. In both polymorphs, the hydromorphone molecules adopt very similar conformations with some small differences observed only in theN-methyl amine part of the molecule. The crystal structures of both polymorphs feature chains of molecules connected by hydrogen bonds; however, in form I this interaction occurs between the hydroxyl group and the tertiary amine N atom whereas in form II the hydroxyl group acts as a donor of a hydrogen bond to the O atom from the cyclic ether part.

Author(s):  
Yoshiharu Nishiyama

The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol −1 . On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol −1 , whereas the London dispersion force contributes about 0.41 kJ mol −1  Da −1 . The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue ‘New horizons for cellulose nanotechnology’.


2006 ◽  
Vol 62 (4) ◽  
pp. 666-675 ◽  
Author(s):  
Christopher Glidewell ◽  
John N. Low ◽  
Janet M. S. Skakle ◽  
James L. Wardell

The structures of five of the possible six isomers of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadiene are reported, including two polymorphs of one of the isomers. (E,E)-1,4-Bis(2-nitrophenyl)-2,3-diaza-1,3-butadiene, C14H10N4O4 (I), crystallizes in two polymorphic forms (Ia) and (Ib) in which the molecules lie across centres of inversion in space groups P21/n and P21/c, respectively: the molecules in (Ia) and (Ib) are linked into chains by aromatic π...π stacking interactions and C—H...π(arene) hydrogen bonds, respectively. Molecules of (E,E)-1-(2-nitrophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene (II) are linked into sheets by two independent C—H...O hydrogen bonds. The molecules of (E,E)-1,4-bis(3-nitrophenyl)-2,3-diaza-1,3-butadiene (III) lie across inversion centres in the space group P21/n, and a combination of a C—H...O hydrogen bond and a π...π stacking interaction links the molecules into sheets. A total of four independent C—H...O hydrogen bonds link the molecules of (E,E)-1-(3-nitrophenyl)-4-(4-nitrophenyl)-2,3-diaza-1,3-butadiene (IV) into sheets. In (E,E)-1,4-bis(4-nitrophenyl)-2,3-diaza-1,3-butadiene (V) the molecules, which lie across centres of inversion in the space group P21/n, are linked by just two independent C—H...O hydrogen bonds into a three-dimensional framework.


2014 ◽  
Vol 541-542 ◽  
pp. 343-348
Author(s):  
Xiu Jie Jia ◽  
Jian Feng Li ◽  
Fang Yi Li

Biomass cushioning packaging material has been gaining attention in the properties of the materials because of biodegradable and green environmental protection, and the starch plastics play an important role. Urea, formamide, glycerol, ethylene glycol four material compounded with starch respectively, for the purpose to forming hydrogen bonds by the test in this paper, the ability to hydrogen bond with the starch has been observed by infrared spectrum analysis. The results showed that urea, formamide as strong electronegative group stronger binding, glycerol and ethylene glycol are more preferably to form hydrogen bonds with the starch because of more hydroxyl group content.


IUCrData ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Salaheddine Boukhssas ◽  
Younas Aouine ◽  
Hassane Faraj ◽  
Anouar Alami ◽  
Abdelilah El Hallaoui ◽  
...  

In the title compound, C28H29N5O, the molecule adopts an approximate U-shape, a conformation imposed at least in part by an intramolecular π–π contact between the two five-membered rings, which display a centroid-to-centroid separation of 3.6522 (7) Å. The planes of these rings are inclined to one another by 66.12 (5)°. A weak intramolecular C—H...·N hydrogen bond is also found. The planes of the phenyl rings of the amine unit are inclined at a dihedral angle of 81.10 (4)°, while that of the 4,5-dihydrooxazole ring makes an angle of 11.74 (8)° with its phenyl substituent. The crystal packing is stabilized by C—H...N hydrogen bonds that form chains parallel to thebaxis. Several C—H...π(ring) contacts are also present.


2020 ◽  
Vol 35 (1) ◽  
pp. 45-52
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structures of two forms of alclometasone dipropionate have been solved and refined using a single synchrotron X-ray powder diffraction pattern and optimized using density functional techniques. Both forms crystallize in the space group P212121 (#19) with Z = 4. The lattice parameters of Form 1 are a = 10.44805(7), b = 14.68762(8), c = 17.31713(9) Å, and V = 2657.44(2) Å3, and those of Form 2 are a = 10.69019(13), b = 14.66136(23), c = 17.17602(23) Å, and V = 2692.05(5) Å3. Both density functional theory and molecular mechanics optimizations indicate that Form 2 is lower in energy, but the differences are within the expected uncertainties of such calculations. In both forms, the only traditional hydrogen bond is between the hydroxyl group and the ketone in the steroid A ring. The chlorine atom acts as an acceptor in two intramolecular C–H⋯Cl hydrogen bonds involving ring hydrogens, as well as in an intermolecular hydrogen bond involving a methyl group. There are several C–H⋯O hydrogen bonds, mainly to ketone oxygens, but also to the hydroxyl group and an ether oxygen. The powder patterns have been submitted to ICDD for inclusion in the Powder Diffraction File™.


2018 ◽  
Vol 34 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk

The crystal structures of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been determined using a combination of powder and single crystal techniques. The structure of (NH4)2HC6H5O7 has been determined previously by single crystal diffraction. All three structures were optimized using density functional techniques. The crystal structures are dominated by N-H⋅⋅⋅O hydrogen bonds, though O-H⋅⋅⋅O hydrogen bonds are also important. In (NH4)H2C6H5O7 very strong centrosymmetric charge-assisted O-H-O hydrogen bonds link one end of the citrate into chains along the b-axis. A more-normal O-H⋅⋅⋅O hydrogen bond links the other end of the citrate to the central ionized carboxyl group. In (NH4)2HC6H5O7, the very strong centrosymmetric O-H-O hydrogen bonds link the citrates into zig-zag chains along the b-axis. The citrates occupy layers parallel to the bc plane, and the ammonium ions link the layers through N-H⋅⋅⋅O hydrogen bonds. In (NH4)3C6H5O7, the hydroxyl group forms a hydrogen bond to a terminal carboxylate, and there is an extensive array of N-H⋅⋅⋅O hydrogen bonds. The energies of the density functional theory-optimized structures lead to a correlation between the energy of an N-H⋅⋅⋅O hydrogen bond and the Mulliken overlap population: E(N-H⋅⋅⋅O) (kcal/mole) = 23.1(overlap)½. Powder patterns of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been submitted to International Centre for Diffraction Data for inclusion in the powder diffraction file.


2002 ◽  
Vol 57 (5) ◽  
pp. 534-546 ◽  
Author(s):  
Dagmar Henschel ◽  
Oliver Moers ◽  
Karna Wijaya ◽  
Andreas Wirth ◽  
Armand Blaschette ◽  
...  

In order to study weak hydrogen bonds originating from inductively activated C(sp3)-H donor groups, low-temperature X-ray structures are reported for three onium salts of general formula BH+(MeSO2)2N-, where BH+ is Me3N+CH2CH2OH (1; orthorhombic, space group P212121, Z′ = 1), Me3N+CH2C(O)OH (2; orthorhombic, P212121, Z′ = 1), or Me2HN+CH2CH2NMe2 (3; monoclinic, P21/c, Z′ = 1). The asymmetric units consist of cationanion pairs assembled by an O-H···O=S hydrogen bond in 1, an O-H···N- bond in 2, and an N+-H ··· N- bond in 3. The packings display a plethora of short interionic C(sp3)-H···O/N contacts that are geometrically consistent with weak hydrogen bonding; those taken into consideration have normalized parameters d(H ··· O) ≤ 269 pm, d(H···N) ≤ 257 pm and θ(C-H···O/N) ≥ 127°. The roles of the weak hydrogen bonds are as follows: In structures 1 and 3, the anions are associated into corrugated layers, which intercalate catemers of cations (1) or stacks of discrete cations (3), whereas structure 2 involves cation catemers surrounded by four anion catemers and vice versa; moreover, all cations are linked to adjacent anions by several weak hydrogen bonds (and to one anion in particular by the strong H bond). Among the cation-anion interactions, the N+(CH2-H···)3O tripod pattern arising in 1 and 2 is of special interest.


Author(s):  
Л.Л. Леонтьев ◽  
И.Д. Лобок ◽  
В.И. Иванов-Омский ◽  
А.С. Смолин

Произведено сравнение систем водородных связей во внешнем и внутреннем слоях березовой бересты, в сравнении с водородными связями в высококачественной бумаге и в образце выделенной из древесины целлюлозы. Интервал исследуемых частот от 3000 до 3700 см-1, ограничен областью поглощения гидроксильными ОН-группами, частоты которых наиболее чувствительны к возникновению Н-связей. Для оценки параметров Н-связей проводилась деконволюция полос поглощения ОН-групп гауссовыми компонентами. Для корректного выделения поглощения гидроксильными группамипервоначально деконволюции подвергается весь фрагмент, включающий в себя полосы поглощения как метиленовым, так и гидроксильными группами. В дальнейшем анализировались только параметры контуров деконволюции, относящейся к гидроксильным группам. Принималось, что каждый компонент деконволюции может быть ассоциирован с определенным типом водородной связи. Определялся сдвиг частот компонентов деконволюции относительно собственной частоты колебаний изолированной гидроксильной группы, не охваченной по этой причине водородной связью. Для определения энергии водородных связей использовались литературные данные по корреляции энергии водородной связи с частотным сдвигом. Относительная плотность водородных связей оценивалась по отношению площадей контуров деконволюции. A comparison was made of the hydrogen bond systems in the outer and inner layer of birch bark, as well as a comparison of high-quality paper with a sample of pure pulp. The range of frequencies under study from 3000 to 3700 cm-1 is limited by the absorption region by hydroxyl OH groups, the frequencies of which are most sensitive to the occurrence of H bonds. To estimate the parameters of H-bonds, the absorption bands of OH groups were deconvolved by Gaussian components. In order to correctly isolate the absorption by hydroxyl groups, the entire fragment, whichincludes absorption bands of both methylene and hydroxyl groups, is initially deconvolved. In the future, only the parameters of the deconvolution contours related to hydroxyl groups were analyzed. It was assumed that each component of deconvolution can be associated with a certain type of hydrogen bond. The frequency shift of the components of the deconvolution was determined relative to the natural frequency of vibrations of the isolated hydroxyl group, which is therefore not covered by a hydrogen bond. To determine the energy of hydrogen bonds, we used literature data on the correlation of the hydrogen bond energy with a frequency shift. The relative density of hydrogen bonds was estimated by the ratio of the area of the contours of deconvolution.


IUCrData ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
G. Vimala ◽  
N. Poomathi ◽  
P. T. Perumal ◽  
A. SubbiahPandi

In the title compound, C13H10N2O5, the dihedral angle between the pyridine and phenyl ring is 50.47 (2)°. The hydroxyl H and ketone O atoms form an intramolecular O—H...O hydrogen bond with the hydroxyl group almost coplanar with the phenyl ring. In the crystal, molecules are linked by two C—H...O hydrogen bonds, forming dimers. The dimers are linked by further C—H...O hydrogen bonds, forming a three-dimensional architecture.


IUCrData ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Miri Yoo ◽  
Dongsoo Koh

In the title compound, C28H28O6, the benzene rings in the resveratrol moiety are connected by a trans C=C double bond, and the hydroxyl group containing a benzene ring and the central benzene ring are linked through a C=(O)—C=C (enone) moiety to form a chalcone unit. An intramolecular O—H...O hydrogen bond generates an S(6) ring motif. In the crystal, pairs of C—H...O hydrogen bonds generate dimers and additional weak C—H...O interactions link the dimers into chains propagating along the b-axis direction.


Sign in / Sign up

Export Citation Format

Share Document