Crystal structures of two polymorphs of alclometasone dipropionate, C28H37ClO7

2020 ◽  
Vol 35 (1) ◽  
pp. 45-52
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structures of two forms of alclometasone dipropionate have been solved and refined using a single synchrotron X-ray powder diffraction pattern and optimized using density functional techniques. Both forms crystallize in the space group P212121 (#19) with Z = 4. The lattice parameters of Form 1 are a = 10.44805(7), b = 14.68762(8), c = 17.31713(9) Å, and V = 2657.44(2) Å3, and those of Form 2 are a = 10.69019(13), b = 14.66136(23), c = 17.17602(23) Å, and V = 2692.05(5) Å3. Both density functional theory and molecular mechanics optimizations indicate that Form 2 is lower in energy, but the differences are within the expected uncertainties of such calculations. In both forms, the only traditional hydrogen bond is between the hydroxyl group and the ketone in the steroid A ring. The chlorine atom acts as an acceptor in two intramolecular C–H⋯Cl hydrogen bonds involving ring hydrogens, as well as in an intermolecular hydrogen bond involving a methyl group. There are several C–H⋯O hydrogen bonds, mainly to ketone oxygens, but also to the hydroxyl group and an ether oxygen. The powder patterns have been submitted to ICDD for inclusion in the Powder Diffraction File™.

2018 ◽  
Vol 34 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk

The crystal structures of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been determined using a combination of powder and single crystal techniques. The structure of (NH4)2HC6H5O7 has been determined previously by single crystal diffraction. All three structures were optimized using density functional techniques. The crystal structures are dominated by N-H⋅⋅⋅O hydrogen bonds, though O-H⋅⋅⋅O hydrogen bonds are also important. In (NH4)H2C6H5O7 very strong centrosymmetric charge-assisted O-H-O hydrogen bonds link one end of the citrate into chains along the b-axis. A more-normal O-H⋅⋅⋅O hydrogen bond links the other end of the citrate to the central ionized carboxyl group. In (NH4)2HC6H5O7, the very strong centrosymmetric O-H-O hydrogen bonds link the citrates into zig-zag chains along the b-axis. The citrates occupy layers parallel to the bc plane, and the ammonium ions link the layers through N-H⋅⋅⋅O hydrogen bonds. In (NH4)3C6H5O7, the hydroxyl group forms a hydrogen bond to a terminal carboxylate, and there is an extensive array of N-H⋅⋅⋅O hydrogen bonds. The energies of the density functional theory-optimized structures lead to a correlation between the energy of an N-H⋅⋅⋅O hydrogen bond and the Mulliken overlap population: E(N-H⋅⋅⋅O) (kcal/mole) = 23.1(overlap)½. Powder patterns of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been submitted to International Centre for Diffraction Data for inclusion in the powder diffraction file.


2018 ◽  
Vol 34 (1) ◽  
pp. 66-73
Author(s):  
Jordan A. Krueger ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of hydroxyzine dihydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Hydroxyzine dihydrochloride crystallizes in space group P21 (#4) with a = 11.48735(10), b = 7.41792(7), c = 14.99234(15) Å, β = 110.4383(10)°, V = 1197.107(13) Å3, and Z = 2. The hydroxyl-containing side chain of the cation is disordered over two conformations, with ~70/30% occupancy. The crystal structure consists of alternating polar (which includes the cation-anion interactions and hydrogen bonds) and nonpolar layers parallel to the ab-plane. The crystal structure is dominated by hydrogen bonds. Each of the protonated nitrogen atoms forms a very strong hydrogen bond to one of the chloride anions. The hydroxyl group forms a strong hydrogen bond to one of the chloride anions in both conformations, and there are subtle differences in the hydrogen bonding patterns between the conformations. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1603.


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Emma L. Markun ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of osimertinib mesylate Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Osimertinib mesylate Form B crystallizes in space group P-1 (#2) with a = 11.42912(17), b = 11.72274(24), c = 13.32213(22) Å, α = 69.0265(5), β = 74.5914(4), γ = 66.4007(4)°, V = 1511.557(12) Å3, and Z = 2. The crystal structure is characterized by alternating layers of cation–anion and parallel stacking interactions parallel to the ab-planes. The cation is protonated at the nitrogen atom of the dimethylamino group, which forms a strong hydrogen bond between the cation and the anion. That hydrogen atom also participates in a weaker intramolecular hydrogen bond to an amino nitrogen. There are two additional N–H⋅⋅⋅O hydrogen bonds between the cation and the anion. Several C–H⋅⋅⋅O hydrogen bonds also link the cations and anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2019 ◽  
Vol 34 (4) ◽  
pp. 368-373 ◽  
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of prednicarbate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Prednicarbate crystallizes in space group P212121 (#19) with a = 7.69990(3), b = 10.75725(3), c = 31.36008(11) Å, V = 2597.55(1) Å3, and Z = 4. In the crystal structure the long axis of the steroid ring system lies roughly parallel to the c-axis. The oxygenated side chains are orientated roughly perpendicular to the steroid ring system and are adjacent to each other, parallel to the ab-plane. The only traditional hydrogen bond donor in the prednicarbate molecule is the hydroxyl group O32–H33, but this does not participate in an O–H···O hydrogen bond. The nearest oxygen atoms to O32 are symmetry-related O32 at 4.495 Å, precluding the expected O–H···O hydrogen bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2015 ◽  
Vol 30 (4) ◽  
pp. 333-339 ◽  
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of salmeterol xinafoate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Salmeterol xinafoate crystallizes in space group P−1 (#2) with a = 9.173 89(13), b = 9.483 79(14), c = 21.3666(4) Å, α = 82.2646(13), β = 85.2531(12), γ = 62.1565(11)°, V = 1628.37(5) Å3, and Z = 2. Key to the structure solution was linking the two fragments by a Li atom along the expected N–H···O hydrogen bond. The salmeterol cation and xinafoate anion are linked by N–H···O and O–H···O hydrogen bonds, interactions which cause the salmeterol to adjust its conformation. The hydrogen bonds result in complex chains along the b-axis. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1430.


2016 ◽  
Vol 31 (2) ◽  
pp. 142-148
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of choline fenofibrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Choline fenofibrate crystallizes in space group Pbca (#61) with a = 12.341 03(2), b = 28.568 70(6), c = 12.025 62(2) Å, V = 4239.84(1) Å3, and Z = 8. The hydroxyl group of the choline anion makes a strong hydrogen bond to the ionized carboxylate group of the fenofibrate anion. Together with C–H···O hydrogen bonds, these link the cations and anions into layers parallel to the ac-plane. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pazopanib hydrochloride Form 1 has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pazopanib hydrochloride crystallizes in space group P-1 (#2) with a = 8.45008(6), b = 8.71310(12), c = 16.05489(35) Å, α = 79.5996(9), β = 86.4784(5), γ = 87.3764(3)°, V = 1159.724(9) Å3, and Z = 2. The crystal structure is essentially identical to that of CSD Refcode CEVYEK. There are four strong N–H⋯Cl hydrogen bonds to the chloride anion. Several additional weaker N–H⋯Cl and C–H⋯Cl hydrogen bonds are also present. A variety of C–H⋯O, C–H⋯N, and N–H⋯S hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


Sign in / Sign up

Export Citation Format

Share Document