scholarly journals Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5

Author(s):  
Alagappa Rammohan ◽  
Amy A. Sarjeant ◽  
James A. Kaduk

The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2+·C6H6O72−·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carboxylic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O...O distances of 2.46 Å.

2021 ◽  
pp. 1-9
Author(s):  
James A. Kaduk

The crystal structure of strontium hydrogen citrate monohydrate has been solved using laboratory X-ray powder diffraction data, refined using both laboratory and synchrotron data, and optimized using density functional techniques. Strontium hydrogen citrate monohydrate crystallizes in space group C2/c (#15) with a = 25.15601(17), b = 10.90724(6), c = 6.37341(4) Å, β = 91.9846(6)°, V = 1747.704(12) Å3, and Z = 8. The Sr coordination and the hydrogen bonding result in a layered structure. The SrO8 coordination polyhedra share edges to form corrugated layers parallel to the bc-plane. Hydrogen bonds between the carboxylic acid groups and water molecules link the layers. Intermolecular hydroxyl–carboxyl hydrogen bonds also link the layers in a ring pattern with a graph set symbol R2,2(12). After storage for 2 years, partial re-crystallization occurred, to an as-yet unknown compound with a triclinic unit cell.


Author(s):  
Alagappa Rammohan ◽  
Amy A. Sarjeant ◽  
James A. Kaduk

The crystal structure of tricaesium citrate monohydrate, 3Cs+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. This compound is isostructural to the K+and Rb+compounds with the same formula. The three independent Cs cations are eight-, eight-, and seven-coordinate, with bond-valence sums of 0.91, 1.22, and 1.12 valence units. The coordination polyhedra link into a three-dimensional framework. The hydroxy group forms the usualS(5) hydrogen bond with the central carboxylate group, and the water molecule acts as a donor in two strong hydrogen bonds.


2018 ◽  
Vol 33 (2) ◽  
pp. 98-107 ◽  
Author(s):  
James A. Kaduk

The crystal structures of calcium citrate hexahydrate, calcium citrate tetrahydrate, and anhydrous calcium citrate have been solved using laboratory and synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Both the hexahydrate and tetrahydrate structures are characterized by layers of edge-sharing Ca coordination polyhedra, including triply chelated Ca. An additional isolated Ca is coordinated by water molecules, and two uncoordinated water molecules occur in the hexahydrate structure. The previously reported polymorph of the tetrahydrate contains the same layers, but only two H2O coordinated to the isolated Ca and two uncoordinated water molecules. Anhydrous calcium citrate has a three-dimensional network structure of Ca coordination polyhedra. The new polymorph of calcium citrate tetrahydrate is the major crystalline phase in several commercial calcium supplements.


2018 ◽  
Vol 34 (1) ◽  
pp. 59-65
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space groupP212121(#19) witha= 7.40772(1),b= 14.44924(3),c= 22.33329(4) Å,V= 2390.465(12) Å3, andZ= 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.


2012 ◽  
Vol 68 (8) ◽  
pp. o2357-o2357 ◽  
Author(s):  
María-Guadalupe Hernández Linares ◽  
Sylvain Bernès ◽  
Marcos Flores-Alamo ◽  
Gabriel Guerrero-Luna ◽  
Anselmo A. Martínez-Gallegos

Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an International Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhanget al.(2005).Acta Cryst.E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin molecules, with quite similar conformations, and one water molecule. Hydroxy groups in steroids and water molecules form O—H...O hydrogen-bondedR54(10) ring motifs. Fused edge-sharingR(10) rings form a backbone oriented along [100], which aggregates the diosgenin molecules in the crystal structure.


2013 ◽  
Vol 830 ◽  
pp. 185-188
Author(s):  
Li Hua Wang ◽  
Zhi Xiang Ji

A new Na (I) complex, [Na (H2O)5(DMF)]·(L) (L=1,5-naphthalenedisulfonate) has been obtained in the CH3CH2OH and a little DMF solution. The complex was characterized by X-ray single crystal diffraction analysis. The results showed that the local geometry around central Na (I) ion can be described a distorted octahedral environment which connected by five water molecules and one DMF molecule. The complex formed one dimensional chain structure through intramolecule and intermolecule hydrogen bonds and π-π stacking.


2014 ◽  
Vol 70 (8) ◽  
pp. i42-i42
Author(s):  
Volodymyr Levytskyy ◽  
Volodymyr Babizhetskyy ◽  
Bohdan Kotur ◽  
Volodymyr Smetana

The crystal structure of the title compound, Tb2Ni7, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaireet al.(1967).C. R. Acad. Sci. Ser. B,265, 1280–1282; Lemaire & Paccard (1969).Bull. Soc. Fr. Mineral. Cristallogr.92, 9–16; Buschow & van der Goot (1970).J. Less-Common Met.22, 419–428], the present redetermination affords refined coordinates and anisotropic displacement parameters for all atoms. A partial occupation for one Tb atom results in the non-stoichiometric composition Tb1.962 (4)Ni7. The title compound adopts the Ce2Ni7structure type and can also be derived from the CaCu5structure type as an intergrowth structure. The asymmetric unit contains two Tb sites (both site symmetries 3m.) and five Ni sites (.m.,mm2, 3m., 3m., -3m.). The two different coordination polyhedra of Tb are a Frank–Kasper polyhedron formed by four Tb and 12 Ni atoms and a pseudo Frank–Kasper polyhedron formed by two Tb and 18 Ni atoms. The four different coordination polyhedra of Ni are Frank–Kasper icosahedra formed by five Tb and seven Ni atoms, four Tb and eight Ni atoms, three Tb and nine Ni atoms, and six Tb and six Ni atoms, respectively.


2016 ◽  
Vol 72 (8) ◽  
pp. 1159-1162 ◽  
Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to thecaxis. The only hydrogen bond is an intramolecular one involving the hydroxy group and the central carboxylate group, with graph-set motifS(5).


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


2019 ◽  
Vol 234 (9) ◽  
pp. 581-586
Author(s):  
Nazar Zaremba ◽  
Yurij Schepilov ◽  
Galyna Nychyporuk ◽  
Viktor Hlukhyy ◽  
Volodymyr Pavlyuk

Abstract The new ternary compound La3Ni4Al2 has been synthesized and the crystal structure has been studied by X-ray single crystal diffraction. La3Ni4Al2 is the first aluminide, crystallizing in the La3Ni4Ga2-type. The crystal structure of La3Ni4Al2 consists of La-layers and hetero-atomic Ni/Al layers, sequentially alternating along the a axis (pseudo-hexagonal c axis). According to electronic structure calculations using the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation (TB-LMTO-ASA), strong Al–Ni interactions have been established. The coordination polyhedra for the Al atoms are cuboctahedra, whereas the bicapped square prism and bicapped square antiprism are typical for nickel atoms. The lanthanum atoms are enclosed in pseudo Frank–Kasper polyhedra.


Sign in / Sign up

Export Citation Format

Share Document