disodium hydrogen citrate
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 76 (10) ◽  
pp. 1572-1578
Author(s):  
Jerry Hong ◽  
Shivang Bhaskar ◽  
Joseph T. Golab ◽  
James A. Kaduk

The crystal structures of disodium hydrogen citrate monohydrate, Na2HC6H5O7(H2O), and diammonium sodium citrate, (NH4)2NaC6H5O7, have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. In NaHC6H5O7(H2O), the NaO6 coordination polyhedra share edges, forming zigzag layers lying parallel to the bc plane. The hydrophobic methylene groups occupy the interlayer spaces. The carboxylic acid group makes a strong charge-assisted hydrogen bond to the central carboxylate group. The hydroxyl group makes an intramolecular hydrogen bond to an ionized terminal carboxylate oxygen atom. Each hydrogen atom of the water molecule acts as a donor, to a terminal carboxylate and the hydroxyl group. Both the Na substructure and the hydrogen bonding differ from those of the known phase Na2HC6H5O7(H2O)1.5. In (NH4)2NaC6H5O7, the NaO6 coordination octahedra share corners, making double zigzag chains propagating along the b-axis direction. Each hydrogen atom of the ammonium ions acts as a donor in a discrete N—H...O hydrogen bond. The hydroxyl group forms an intramolecular O—H...O hydrogen bond to a terminal carboxylate oxygen atom.


Author(s):  
Alagappa Rammohan ◽  
Amy A. Sarjeant ◽  
James A. Kaduk

The crystal structure of disodium hydrogen citrate sesquihydrate, 2Na2+·C6H6O72−·1.5H2O, has been solved and refined using laboratory X-ray single-crystal diffraction data, and optimized using density functional techniques. The asymmetric unit contains two independent hydrogen citrate anions, four sodium cations and three water molecules. The coordination polyhedra of the cations (three with a coordination number of six, one with seven) share edges to form isolated 8-rings. The un-ionized terminal carboxylic acid groups form very strong hydrogen bonds to non-coordinating O atoms, with O...O distances of 2.46 Å.


2007 ◽  
Vol 4 (2) ◽  
pp. 465-470 ◽  
Author(s):  
G. Krishnakumar ◽  
K. Krishnankutty ◽  
S. Mohanan ◽  
K. Raju ◽  
C. Yohannan Panicker

1960 ◽  
Vol 04 (03) ◽  
pp. 376-388 ◽  
Author(s):  
J Dieter Geratz ◽  
John B. Graham

Summary1. PTC activity was assayed in 26 units of human plasma prepared from whole blood stored for 3 weeks at 4° C. The plasma had been frozen and stored at — 20° C for additional periods ranging from a few days to 4 months. High PTC activity was still present in the plasma at the end of this period, the activity averaging 95% of normal.2. The PTC activity of 19 samples of “reclaimed“ plasma stored for an additional 6 months at — 20° C decreased by an average of 23%. This decrease was statistically significant.3. Liquid plasma kept at room temperature for 5½—7½ months contained no PTC activity.4. Lyophilized plasma stored at room temperature for 6—8 years contained an average of 30% PTC activity. Lyophilized plasma stored at — 20° C for 4 years contained 68% PTC activity.5. ACD and disodium hydrogen citrate anticoagulant solutions served equally well in preserving PTC activity in whole blood stored in glass tubes over a period of 3 weeks at 4° C.6. “Reclaimed“ plasma from outdated bank blood provided effective hemostasis in two operations for the removal of 20 teeth from a severely PTC-deficient patient.7. The high PTC activity of “reclaimed“ plasma was confirmed by the close agreement between the PTC level expected in a PTC deficient patient after transfusion of such plasma and that observed.


Nature ◽  
1949 ◽  
Vol 164 (4168) ◽  
pp. 493-494 ◽  
Author(s):  
J. G. SELWYN

Sign in / Sign up

Export Citation Format

Share Document