scholarly journals Coordination compounds containing bis-dithiolene-chelated molybdenum(IV) and oxalate: comparison of terminal with bridging oxalate

2017 ◽  
Vol 73 (8) ◽  
pp. 1202-1207
Author(s):  
Agata Gapinska ◽  
Alan J. Lough ◽  
Ulrich Fekl

Two coordination compounds containing tetra-n-butylammonium cations and bis-tfd-chelated molybdenum(IV) [tfd2− = S2C2(CF3)2 2−] and oxalate (ox2−, C2O4 2−) in complex anions are reported, namely bis(tetra-n-butylammonium) bis(1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)oxalatomolybdate(IV)–chloroform–oxalic acid (1/1/1), (C16H36N)2[Mo(C4F6S2)2(C2O4)]·CHCl3·C2H2O4 or (N n Bu4)2[Mo(tfd)2(ox)]·CHCl3·C2H2O4, and bis(tetra-n-butylammonium) μ-oxalato-bis[bis(1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)molybdate(IV)], (C16H36N)2[Mo2(C4F6S2)4(C2O4)] or (N n Bu4)2[(tfd)2Mo(μ-ox)Mo(tfd)2]. They contain a terminal oxalate ligand in the first compound and a bridging oxalate ligand in the second compound. Anion 1 2− is [Mo(tfd)2(ox)]2− and anion 2 2−, formally generated by adding a Mo(tfd)2 fragment onto 1 2−, is [(tfd)2Mo(μ-ox)Mo(tfd)2]2−. The crystalline material containing 1 2− is (N n Bu4)2-1·CHCl3·oxH2, while the material containing 2 2− is (N n Bu4)2-2. Anion 2 2− lies across an inversion centre. The complex anions afford a rare opportunity to compare terminal oxalate with bridging oxalate, coordinated to the same metal fragment, here (tfd)2MoIV. C—O bond-length alternation is observed for the terminal oxalate ligand in 1 2−: the difference between the C—O bond length involving the metal-coordinating O atom and the C—O bond length involving the uncoordinating O atom is 0.044 (12) Å. This bond-length alternation is significant but is smaller than the bond-length alternation observed for oxalic acid in the co-crystallized oxalic acid in (N n Bu4)2-1·CHCl3·oxH2, where a difference (for C=O versus C—OH) of 0.117 (14) Å was observed. In the bridging oxalate ligand in 2 2−, the C—O bond lengths are equalized, within the error margin of one bond-length determination (0.006 Å). It is concluded that oxalic acid contains a localized π-system in its carboxylic acid groups, that the bridging oxalate ligand in 2 2− contains a delocalized π-system and that the terminal oxalate ligand in 1 2− contains an only partially localized π-system. In (N n Bu4)2-1·CHCl3·oxH2, the F atoms of two of the –CF3 groups in 1 2− are disordered over two sets of sites, as are the N and eight of the C atoms of one of the N n Bu4 cations. In (N n Bu4)2-2, the whole of the unique N n Bu4 + cation is disordered over two sets of sites. Also, in (N n Bu4)2-2, a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18].

2012 ◽  
Vol 68 (8) ◽  
pp. m1104-m1105 ◽  
Author(s):  
Yassin Belghith ◽  
Jean-Claude Daran ◽  
Habib Nasri

In the title complex, [CoCl(C44H28N4)(C5H5N)]·0.5CHCl3or [CoIII(TPP)Cl(py)]·0.5CHCl3(where TPP is the dianion of tetraphenylporphyrin and py is pyridine), the average equatorial cobalt–pyrrole N atom bond length (Co—Np) is 1.958 (7) Å and the axial Co—Cl and Co—Npydistances are 2.2339 (6) and 1.9898 (17) Å, respectively. The tetraphenylporphyrinate dianion exhibits an important nonplanar conformation with major ruffling and saddling distortions. In the crystal, molecules are linkedviaweak C—H...π interactions. In the difference Fourier map, a region of highly disordered electron density was estimated using the SQUEEZE routine [PLATON; Spek (2009),Acta Cryst.D65, 148–155] to be equivalent to one half-molecule of CHCl3per molecule of the complex.


2009 ◽  
Vol 131 (17) ◽  
pp. 6099-6101 ◽  
Author(s):  
Shino Ohira ◽  
Joel M. Hales ◽  
Karl J. Thorley ◽  
Harry L. Anderson ◽  
Joseph W. Perry ◽  
...  

1993 ◽  
Vol 90 (23) ◽  
pp. 11297-11301 ◽  
Author(s):  
C B Gorman ◽  
S R Marder

A computational method was devised to explore the relationship of charge separation, geometry, molecular dipole moment (mu), polarizability (alpha), and hyperpolariz-abilities (beta, gamma) in conjugated organic molecules. We show that bond-length alternation (the average difference in length between single and double bonds in the molecule) is a key structurally observable parameter that can be correlated with hyperpolarizabilities and is thus relevant to the optimization of molecules and materials. By using this method, the relationship of bond-length alternation, mu, alpha, beta, and gamma for linear conjugated molecules is illustrated, and those molecules with maximized alpha, beta, and gamma are described.


1998 ◽  
Vol 108 (16) ◽  
pp. 6681-6688 ◽  
Author(s):  
Cheol Ho Choi ◽  
Miklos Kertesz

1996 ◽  
Vol 352-354 ◽  
pp. 32-35 ◽  
Author(s):  
R.V. Vedrinskii ◽  
A.I. Taranukhina ◽  
L.A. Bugaev ◽  
V.L. Kraizman ◽  
A.V. Morozov ◽  
...  

Author(s):  
Jochen Autschbach

Huckel molecular orbital (HMO) theory is a simple approximate parameterized molecular orbital (MO) theory that has been very successful in organic chemistry and other fields. This chapter introduces the approximations made in HMO theory, and then treats as examples ethane, hetratriene and other linear polyenes, and benzene and other cyclic polyenes. The pi binding energy of benzene is particularly large according to HMO theory, rationalizing the special ‘aromatic’ behaviour of benzene. But there is a lot more to benzene than that. It is shown that the pi bond framework of benzene would rather prefer a structure with alternating single and double C-C bonds, rather than the actually observed 6-fold symmetric structure where all C-C bonds are equivalent. The observed benzene structure is a result of a delicate balance between the tendencies of the pi framework to create bond length alternation, and the sigma framework to resist bond length alternation.


2011 ◽  
Vol 133 (10) ◽  
pp. 3354-3364 ◽  
Author(s):  
Igor Schapiro ◽  
Mikhail Nikolaevich Ryazantsev ◽  
Luis Manuel Frutos ◽  
Nicolas Ferré ◽  
Roland Lindh ◽  
...  

1980 ◽  
Vol 35 (5) ◽  
pp. 522-525 ◽  
Author(s):  
Gisela Beindorf ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

The complexes AsPh4[Cl4V = N-Cl] and AsPh4[VOCl4] are prepared by the reaction of AsPh4Cl with Cl3VNCl and VOCl3, respectively. The IR spectra indicate C4v symmetry for the complex anions with multiple VN and VO bonds and a linear arrangement for the VNCl-group. AsPh4[VOCl4] crystallizes in the tetragonal space group P4/n with two formula units in the unit cell. The crystal structure was solved by X-ray diffraction methods (R = 0,062, 1096 observed, independent reflexions). The structure consists of AsPh4+ cations and [VOCl4]- anions with symmetry C4v. The extremely short VO bond length corresponds with a VO triple; its steric requirements cause the relatively large bond angle OVCl of 103.4°.


Sign in / Sign up

Export Citation Format

Share Document