scholarly journals Crystal structures of two dimeric nickel diphenylacetate complexes

2019 ◽  
Vol 75 (11) ◽  
pp. 1768-1773 ◽  
Author(s):  
A. A. Nikiforov ◽  
D. O. Blinou ◽  
E. N. Dubrov ◽  
N. S. Panina ◽  
A. I. Ponyaev ◽  
...  

In the crystal structures of the title compounds, namely μ-aqua-κ2 O:O-di-μ-diphenylacetato-κ4 O:O′-bis[(diphenylacetato-κO)bis(pyridine-κN)nickel(II)], [Ni2(C14H11O2)4(C5H5N)4(H2O)] (1) and μ-aqua-κ2 O:O-di-μ-diphenylacetato-κ4 O:O′-bis[(2,2′-bipyridine-κ2 N,N′)(diphenylacetato-κO)nickel(II)]–acetonitrile–diphenylacetic acid (1/2.5/1), [Ni2(C14H11O2)4(C10H8N2)2(H2O)]·2.5CH3CN·C14H12O2 (2), the complex units are stabilized by a variety of intra- and intermolecular hydrogen bonds, as well as C—H...π and π–π contacts between the aromatic systems of the pyridine, dipyridyl and diphenylacetate ligands. Despite the fact that the diphenylacetate ligand is sterically bulky, this does not interfere with the formation of the described aqua-bridged dimeric core, even with a 2,2′-bipyridine ligand, which has a strong chelating effect.

IUCrData ◽  
2019 ◽  
Vol 4 (12) ◽  
Author(s):  
Kwang Ha

In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2′-bipyridine ligand, one O atom and one N atom from the pyridine-2,6-dicarboxylate anion. The complex and solvent water molecule are linked by intermolecular hydrogen bonds. In the crystal, the complex molecules are stacked in columns along the a axis.


2019 ◽  
Vol 234 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Nathasha R. de L. Correira ◽  
Thais C.M. Noguiera ◽  
Alessandra C. Pinheiro ◽  
...  

Abstract The crystal structures of four azines, namely 1-3-bis(4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 1, 1,3-bis(2,3-dimethoxyphenyl)-2,3-diaza-1,4-butadiene, 2, 1,3-bis(2-hydroxy-3-methoxyphenyl)-2,3-diaza-1,4-butadiene, 3, and 1,3-bis(2-hydroxy-4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 4, are reported. Molecules of 3 and 4, and both independent molecules of 2, Mol A and Mol B, possess inversion centers. The central C=N–N=C units in each molecule is planar with an (E,E) conformation. The intermolecular interactions found in the four compounds are C–H···O, C–H–N, C–H---π and π---π interactions. However, there is no consistent set of intermolecular interactions for the four compounds. Compound, 1, has a two-dimensional undulating sheet structure, generated from C–H···O and C–H···N intermolecular hydrogen bonds. The only recognized intermolecular interaction in 2 is a C–H···O hydrogen bond, which results in a zig-zag chain of alternating molecules, Mol A and Mol B. While 3 forms a puckered sheet of molecules, solely via C–H···π interactions, its isomeric compound, 4, has a more elaborate three-dimensional structure generated from a combination of C–H···O hydrogen bonds, C–H···π and π···π interactions. The findings in this study, based on both PLATON and Hirshfeld approaches, for the four representative compounds match well the reported structural findings in the literature of related compounds, which are based solely on geometric parameters.


2019 ◽  
Vol 48 (35) ◽  
pp. 13378-13387 ◽  
Author(s):  
Constance Lecourt ◽  
Warren Madanamoothoo ◽  
Vivian Ferreol ◽  
Nicolas Bélanger-Desmarais ◽  
Lhoussain Khrouz ◽  
...  

One-electron transfer from Mn(ii) ions to an imino nitroxide radical gives mononuclear Mn(iii) complexes of the reduced amino imine-oxide form for which crystal structures evidence hydrogen bonds networks acting as a stabilizing driving-force.


2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


1985 ◽  
Vol 38 (3) ◽  
pp. 401 ◽  
Author(s):  
MJ O'Connell ◽  
CG Ramsay ◽  
PJ Steel

The colourless crystalline form of the benzoylpyrazolone (2) has molecules with the NH structure (2c) stabilized by intermolecular hydrogen bonds. At room temperature crystals are monoclinic: P21/c, a 13.508(5), b 9.124(4), c 11.451(3)Ǻ, β 90.80(3)°, Z4; the structure was refined to R 0.059, Rw 0.048. The acetoacetylpyrazolone (3) has the OH structure (3c) with two intramolecular hydrogen bonds. At 193 K crystals are triclinic: Pī , a 7.142(2), b 13.704(8), c 14.699(7)Ǻ, α 117.36(3), β 96.87(3), γ 93.73(3)°, Z 4; the structure was refined to R 0.049, Rw 0.054.


1996 ◽  
Vol 51 (10) ◽  
pp. 1469-1472 ◽  
Author(s):  
Joachim Pickardt ◽  
Britta Kühn

Crystals of |Zn(cnge)2(SCN)2]-2H2O (1) were obtained by evaporation of an aqueous solution of Z n(SO4)·7H2O , KSCN, and cyanoguanidine. Crystals of Zn(eoge)Br2 (2) were obtained by reaction of ZnBr2 and cyanoguanidine in ethanol/water. Both compounds are monoclinic, space group C2/c, 1: Z = 4, a = 1919.6(7), b = 467.3(2), c = 1838.5(6) pm, β = 112.99(3)°, 2: Z = 8, a = 1799.5(6), b = 878.7(2), c = 1367.2(5) pm, β = 101.52(3)°. In 1 each Zn is bonded to two cyanoguanidine molecules and via the N atoms to two NCS groups. Intermolecular hydrogen bonds lead to chains along the a-axis, and these chains are again connected via hydrogen bonds to the two crystal water molecules. In the course of the formation of 2, the cyanoguanidine reacted with the ethanol to form 1-ethoxyiminomethylguanidine. This ligand forms chelate rings with the Zn atoms, which are tetrahedrally coordinated by the two imino N atoms of the ligand and by two bromine atoms.


Author(s):  
C. Foces-Foces ◽  
A. L. Llamas-Saiz ◽  
J. Elguero

AbstractThe crystal structures of 4-bromopyrazole and 3,5-dimethyl-4-bromopyrazole have been determined. The molecules are linked by N–H···N intermolecular hydrogen bonds giving rise to trimers and catemers, which are in turn connected by weak C–H···Br contacts to form a three-dimensional network.


2000 ◽  
Vol 55 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Teresa Borowiak ◽  
Irena Wolska ◽  
Artur Korzański ◽  
Wolfgang Milius ◽  
Wolfgang Schnick ◽  
...  

The crystal structures of two compounds containing enaminone heterodiene systems and forming intermolecular hydrogen bonds N-H·O are reported: 1) 3-ethoxycarbonyl-2-methyl-4-pyridone (hereafter ETPY) and 2) 3-ethoxycarbonyl-2-phenyl-6-methoxycarbonyl-5,6-di-hydro-4-pyridone (hereafter EPPY). The crystal packing is controlled by intermolecular hydro­ gen bonds N-H·O = C connecting the heteroconjugated enaminone groups in infinite chains. In ETPY crystals the intermolecular hydrogen bond involves the heterodienic pathway with the highest π-delocalization that is effective for a very short N·O distance of 2.701(9) Å (average from two molecules in the asymmetric unit). Probably due to the steric hindrance, the hydrogen bond in EPPY is formed following the heterodienic pathway that involves the ester C = O group, although π-delocalization along this pathway is less than that along the pyridone-part pathway resulting in a longer N·O distance of 2.886(3) Å


Sign in / Sign up

Export Citation Format

Share Document