scholarly journals Crystal structures of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(pentafluorophenyl)porphyrin as the chloroform monosolvate and tetrahydrofuran monosolvate

Author(s):  
Christopher J. Kingsbury ◽  
Keith J. Flanagan ◽  
Marc Kielmann ◽  
Brendan Twamley ◽  
Mathias O. Senge

The crystal structures of the title compounds, two solvates (CHCl3 and THF) of a symmetric and highly substituted porphyrin, C44H2Br8F20N4 or OBrTPFPP, are described. These structures each feature a non-planar porphyrin ring, exhibiting a similar conformation of the strained ring independent of solvent identity. These distorted porphyrins are able to form hydrogen bonds and sub-van der Waals halogen interactions with enclathrated solvent; supramolecular interactions of proximal macrocycles are additionally affected by solvent choice. The crystal studied for compound 1·CHCl3 was refined as an inversion twin. One pentafluorophenyl group was modelled as disordered over two sites [occupancy ratio = 0.462 (7):0.538 (7)]. The chloroform solvate was also modelled as disordered over two orientations [occupancy ratio = 0.882 (7): 0.118 (7).

2013 ◽  
Vol 268 ◽  
pp. 432-435 ◽  
Author(s):  
Ji Yeon Kim ◽  
Won Jun Jang ◽  
Howon Kim ◽  
Jong Keon Yoon ◽  
Jihun Park ◽  
...  

2018 ◽  
Vol 74 (3) ◽  
pp. 283-288
Author(s):  
Robert Nestler ◽  
Anke Schwarzer ◽  
Tobias Gruber

Three anisole building blocks featuring bis(hydroxymethyl) or bis(bromomethyl) pendants have been analyzed with regard to their molecular structures and packing behaviour. The compounds are ethyl 3,5-bis(hydroxymethyl)-4-methoxybenzoate, C12H16O5, (I), [5-bromo-3-(hydroxymethyl)-2-methoxyphenyl]methanol [or 4-bromo-2,6-bis(hydroxymethyl)anisole], C9H11BrO3, (II), and 5-bromo-1,3-bis(bromomethyl)-2-methoxybenzene [or 4-bromo-2,6-bis(bromomethyl)anisole], C9H9Br3O, (III). A typical supramolecular pattern involved C—H...π interactions generating molecular stacks, while π–π interactions were only observed in the absence of bromine, indicating a striking influence on the distances between adjacent aromatic moieties. When comparing bis(hydroxymethyl) compound (II) with bis(bromomethyl) compound (III), we found that the strong O—H...O hydrogen bonds in a zigzag arrangement in the first are replaced by C—H...Br interactions in the second without a change in the general packing.


2014 ◽  
Vol 70 (8) ◽  
pp. 65-67 ◽  
Author(s):  
Paul Kautny ◽  
Johannes Fröhlich ◽  
Berthold Stöger ◽  
Matthias Weil

In the molecules of the two isotypic title compounds, C18H11Br2N3O4(I) and C18H11Cl2N3O4(II), the triphenylamine N atoms show no sign of pyramidalization, with marginal displacements of the N atoms from the mean plane of the three connecting C atoms: 0.0058 (13) Å for the Br compound (I) and 0.0074 (9) Å for the Cl compound (II). In the crystals, molecules are linked through C—H...O hydrogen bonds between phenyl rings and nitro groups and byX...O (X= Br, Cl) interactions, that are shorter than the sum of the van der Waals radii, leading to a three-dimensional network.


2000 ◽  
Vol 65 (12) ◽  
pp. 1950-1958 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Alexandr Jegorov

Two isomorphous clathrates formed by dihydrocyclosporin A or cyclosporin V with tert-butyl methyl ether are reported and compared with the structures of related P21-symmetry cyclosporin clathrates. The cyclosporin molecules in both structures are associated via van der Waals interactions forming cavities occupied by solvent molecules (cyclosporin : tert-butyl methyl ether is 1 : 2).


2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Evgeny V. Nazarchuk ◽  
Dmitri O. Charkin ◽  
Oleg I. Siidra

Three new uranyl sulfates, [pyH](H3O)[(UO2)3(SO4)4(H2O)2] (1), [pyH]2[(UO2)6(SO4)7(H2O)] (2), and [pyH]2[(UO2)2(SO4)3] (3), were produced upon hydrothermal treatment and successive isothermal evaporation. 1 is monoclinic, P21/c, a = 14.3640(13), b = 10.0910(9), c = 18.8690(17) Å, β = 107.795(2), V = 2604.2(4) Å3, R1 = 0.038; 2 is orthorhombic, C2221, a = 10.1992(8), b = 18.5215(14), c = 22.7187(17) Å, V = 4291.7(6) Å3, R1 = 0.030; 3 is orthorhombic, Pccn, a = 9.7998(8), b = 10.0768(8), c = 20.947(2) Å, V = 2068.5(3) Å3, R1 = 0.055. In the structures of 1 and 2, the uranium polyhedra and SO4 tetrahedra share vertices to form ∞3[(UO2)3(SO4)4(H2O)2]2− and ∞3[(UO2)6(SO4)7(H2O)]2− frameworks featuring channels (12.2 × 6.7 Å in 1 and 12.9 × 6.5 Å in 2), which are occupied by pyridinium cations. The structure of 3 is comprised of ∞2[(UO2)2(SO4)3]2− layers linked by hydrogen bonds donated by pyridinium cations. The compounds 1–3 are formed during recrystallization processes, in which the evaporation of mother liquor leads to a stepwise loss of hydration water.


Author(s):  
Zhe An ◽  
Jing Gao ◽  
William T. A. Harrison

The syntheses and crystal structures of 0.25-aqua(benzene-1,4-dicarboxylato-κ2O,O′)bis(sparfloxacin-κ2O,O′)manganese(II) dihydrate, [Mn(C8H4O4)(C19H22F2N4O3)2(H2O)0.25]·2H2O or [Mn(bdc)(Hspar)2(H2O)0.25]·2H2O, (I), and bis(sparfloxacin-κ2O,O′)copper(II) benzene-1,4-dicarboxylate dihydrate, [Cu(C19H22F2N4O3)2](C8H4O4)·2H2O or [Cu(Hspar)2](bdc)·2H2O, (II), are reported (Hspar = sparfloxacin and bdc = benzene-1,4-dicarboxylate). The Mn2+ion in (I) is coordinated by twoO,O′-bidentate Hspar neutral molecules (which exist as zwitterions) and anO,O′-bidentate bdc dianion to generate a distorted MnO6trigonal prism. A very long bond [2.580 (12) Å] from the Mn2+ion to a 0.25-occupied water molecule projects through a square face of the prism. In (II), the Cu2+ion lies on a crystallographic inversion centre and a CuO4square-planar geometry arises from its coordination by twoO,O′-bidentate Hspar molecules. The bdc dianion acts as a counter-ion to the cationic complex and does not bond to the metal ion. The Hspar ligands in both (I) and (II) feature intramolecular N—H...O hydrogen bonds, which closeS(6) rings. In the crystals of both (I) and (II), the components are linked by N—H...O, O—H...O and C—H...O hydrogen bonds, generating three-dimensional networks.


2020 ◽  
Vol 43 (1) ◽  
pp. 99-101
Author(s):  
Daniel Duvinage ◽  
Artem Schröder ◽  
Enno Lork ◽  
Jens Beckmann

AbstractThe crystal structures of the salts [Li(1,2-F2C6H4)] [B(C6F5)4] (1) and Cs[B(C6F5)4] (2) comprise six Li···F contacts (1.965(3) − 2.312(3) Å) and twelve Cs···F contacts (3.0312(1) − 3.7397(2) Å), respectively, which are significantly shorter than the sum of van der Waals radii (3.29 and 4.90 Å).


ChemPhysChem ◽  
2013 ◽  
Vol 14 (14) ◽  
pp. 3221-3226 ◽  
Author(s):  
Witali Beichel ◽  
Philipp Eiden ◽  
Ingo Krossing

Author(s):  
Amila M. Abeysekera ◽  
Boris B. Averkiev ◽  
Pierre Le Magueres ◽  
Christer B. Aakeröy

The roles played by halogen bonds and hydrogen bonds in the crystal structures of N-(pyridin-2-yl)amides were evaluated and rationalised in the context of calculated molecular electrostatic potentials.


Sign in / Sign up

Export Citation Format

Share Document