scholarly journals Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis

Author(s):  
Sundararaman Leela ◽  
Ashokkumar Subashini ◽  
Philip Reji ◽  
Kandasami Ramamurthi ◽  
Helen Stoeckli-Evans

In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H...O hydrogen bonds predominate in linking the major components, while weak C—H...Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures.

2018 ◽  
Vol 74 (12) ◽  
pp. 1887-1890 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Vadim A. Pavlenko

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except thetert-butyl groups, located on the mirror plane. There is an intramolecular O—H...N hydrogen bond present forming anS(6) ring motif. In the crystal, the molecules are connected by C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (68.9%) and C...H/H...C (11.7%) interactions.


2018 ◽  
Vol 74 (10) ◽  
pp. 1513-1516 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Galyna G. Tsapyuk

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the molecules are connected by weak C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (67.2%), C...H/H...C (26.7%) and C...C (2.5%) interactions.


2018 ◽  
Vol 74 (8) ◽  
pp. 1079-1082
Author(s):  
Antony Samy Victoria ◽  
Palaniyappan Sivajeyanthi ◽  
Natarajan Elangovan ◽  
Kasthuri Balasubramani ◽  
Thathan Kolochi ◽  
...  

The title Schiff base compound, C17H16N2O6, has an E configuration with respect to the C=N bond, with a dihedral angle between the two benzene rings of 31.90 (12)°. There is an intramolecular O—H...Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, molecules are linked by pairs of O—H...O hydrogen bonds, forming inversion dimers enclosing an R 2 2(4) ring motif. The dimers are linked about an inversion centre by pairs of C—H...O hydrogen bonds, which enclose R 2 2(22) loops, forming chains propagating along the [10\overline{3}] direction. Hirshfeld surface analysis and fingerprint plots show enrichment ratios for the H...H, O...H and C...H contacts, indicating a high propensity of such interactions in the crystal. Both the nitro group and the CH3–CH2–O– group are positionally disordered.


Author(s):  
Sevgi Kansiz ◽  
Semanur Yesilbag ◽  
Necmi Dege ◽  
Eiad Saif ◽  
Erbil Agar

The Schiff base compound, C24H24N2O4, was synthesized by the interaction of 2-hydroxy-3-methoxy benzaldehyde and 1,4-benzene dimethanamine in ethanol, and crystallizes in the monoclinic space group P21/n with Z′ = 0.5. The molecule is not planar, the 1,4-diethylbenzene and the phenol rings are twisted with respect to each other, making a dihedral angle of 74.27 (5)°. The molecular structure is stabilized by an O—H...N hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, resulting in the formation of sheets parallel to the bc plane. A Hirshfeld surface analysis was undertaken to investigate the various intermolecular contacts controlling the supramolecular topology, suggesting the H...O (18%) contacts to be the most significant interactions, whereas the H...H (50.5%) and C...H (24.3%) interactions are less significant.


Author(s):  
Rubina Siddiqui ◽  
Urooj Iqbal ◽  
Zafar Saeed Saify ◽  
Shammim Akhter ◽  
Sammer Yousuf

The title compound, C31H46NO7 +·Cl−, was synthesized by a one-pot Mannich condensation reaction. In the molecule, the piperidinone ring adopts a chair conformation, and the trimethoxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H...Cl and C—H...Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O...H (20.5%) interactions followed by C...H (7.8%), Cl...H (5.5%), C...C (1.2%), C...O (0.5%) and Cl...O (0.4%) interactions.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


2019 ◽  
Vol 75 (12) ◽  
pp. 1934-1939 ◽  
Author(s):  
Yvon Bibila Mayaya Bisseyou ◽  
Mahama Ouattara ◽  
Pénétjiligué Adama Soro ◽  
R. C. A. Yao-Kakou ◽  
Abodou Jules Tenon

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-dithiolane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-dithiolane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intramolecular C—H...O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid molecules are associated in R 2 2(14) dimeric units by weak C—H...O interactions. O—H...O hydrogen bonds link the water molecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H...N hydrogen bonding. Analysis of intermolecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water molecules are the main driving force in the crystal packing formation.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Sign in / Sign up

Export Citation Format

Share Document