scholarly journals The layer silicate Cs2SnIVSi6O15

Author(s):  
Michael Ketter ◽  
Matthias Weil

Single crystals of Cs2SnSi6O15, dicaesium tin(IV) hexasilicate, were serendipitously obtained from a CsCl/NaCl flux at 923 K, starting from mixtures of CaO, SnO and TeO2 in a closed silica ampoule. The crystal structure of Cs2SnSi6O15 is constructed from {Si6O15}6– layers extending parallel to (101), and CsI cations with a coordination number of eleven as well as isolated [SnO6] octahedra situated between the silicate layers. Each of the nine different SiO4 tetrahedra in the silicate layer has a connectedness of Q 3 (three bridging and one terminal O atom), which leads to the formation of five- and eight-membered rings. The same type of silicate layer is found in the crystal structure of the mineral zeravshanite. Comparison with other silicates of the type Cs2 M IVSi6O15 (M IV = Ti, Zr, Th, U) revealed a klassengleiche group–subgroup relationship of index 2 between Cs2ZrSi6O15 (Z = 6, space group C2/m) and Cs2SnSi6O15 (Z = 12, space group I2/c).

1996 ◽  
Vol 51 (11) ◽  
pp. 1583-1586 ◽  
Author(s):  
A. Mommertza ◽  
K. Dehnickea ◽  
J. Magull

Colourless single crystals of the title compound are obtained from a saturated solution of NaOSiPh3 in toluene in a humid atmosphere. We have characterized [Na4(OSiPh3)H2O)3] by IR spectroscopy and by a crystal structure determination. Space group R3, Z = 6 , R = 0.056. Lattice dimensions at -70°C: a = b = 1540.3 pm, c = 2639.6 pm. The compound has the structure of a Na4O4 heterocubane which is only slighty distorted and in which one of the sodium atoms is not hydrated and shows coordination number three.


2020 ◽  
Vol 76 (9) ◽  
pp. 1412-1416
Author(s):  
Günther J. Redhammer ◽  
Gerold Tippelt

Single crystals of KScP2O7, potassium scandium diphosphate, were grown in a borate flux. The title compound crystallizes isotypically with KAlP2O7 in space-group type P21/c, Z = 4. The main building block is an {ScP2O11}9– unit, forming layers parallel to (001). These layers are stacked along [001] via common corners of octahedral and tetrahedral units to span up large heptagonal cavities that host the potassium cations with a coordination number of 10. The P—O—P bridging angle increases with increasing size of the octahedrally coordinated M III cation, as do the K—O distances within a series of KM IIIP2O7 compounds (M III = Al to Y with ionic radii r = 0.538 to 0.90 Å).


1997 ◽  
Vol 52 (5) ◽  
pp. 663-668 ◽  
Author(s):  
B. Mertens ◽  
Hk. Müller-Buschbaum

Abstract Single crystals of I RbCd4V3O12 and TlCd4V3O12 II have been prepared by solid state reactions in closed iron tubes. The compounds crystallize closely related to the Johillerite structure in the space group C62h- C2/c with I: a = 13.058(3); b - 13.528(3), c = 7 .0 6 0 (2 )Å , β = 114.88(2)°; II: a = 12.999(6), b = 13.527(7), c = 7.055(3) Å , β = 114.88(4)°, Z = 4. Special features are the loss of Cu2+ in order to gain an additional Cd2+ position. The crystal structure is discussed with respect to related compounds of the Johillerite type.


2015 ◽  
Vol 70 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

AbstractThe new compounds LiK[C(CN)3]2 and Li[C(CN)3]·½ (H3C)2CO were synthesized and their crystal structures were determined. Li[C(CN)3]·½ (H3C)2CO crystallizes in the orthorhombic space group Ima2 (no. 46) with the cell parameters a=794.97(14), b=1165.1(2) and c=1485.4(3) pm, while LiK[C(CN)3]2 adopts the monoclinic space group P21/c (no. 14) with the cell parameters a=1265.7(2), b=1068.0(2) and c=778.36(12) pm and the angle β=95.775(7)°. Single crystals of K[C(CN)3] were also acquired, and the crystal structure was refined more precisely than before corroborating earlier results.


2017 ◽  
Vol 72 (11) ◽  
pp. 765-774
Author(s):  
Daniel Rudolph ◽  
Sonja Laufer ◽  
Ingo Hartenbach

AbstractAttempts to synthesize Pr4Mo7O27 using Pr, Pr6O11 and MoO3 in a molar ratio of 8:6:77 led to a main product of scheelite-type Pr0.667[MoO4] and few single crystals of the triclinic A-type Pr6Mo10O39. The latter crystallizes in space group P1̅ (a=945.25(1), b=1058.49(2), c=1815.16(3) pm; α=104.149(1), β=95.220(1), γ=102.617(1)°, Z=2). Its crystal structure comprises six crystallographically independent Pr3+ cations, eight tetrahedral [MoO4]2− units, and one [Mo2O7]2− entity. The cations display coordination numbers of seven (1×) and eight (5×), while the [MoO4]2− tetrahedra are surrounded by five Pr3+ cations each. The [Mo2O7]2− anions exhibit a coordination environment of seven Pr3+ cations. The attempt to synthesize PrF[MoO4] using PrOF (from in situ thermal decomposition of PrF[CO3]) as reagent did not lead to the desired product but to monoclinic B-type Pr6Mo10O39. This slightly less dense modification compared to its triclinic analogue crystallizes in space group C2/c (a=1247.93(3), b=1989.68(6), c=1392.52 (4) pm, β=100.505(2)°, Z=4) with three crystallographically independent Pr3+ cations, four [MoO4]2− tetrahedra, and again one [Mo2O7]2− unit in the crystal structure. Thus, both Pr6Mo10O39 modifications are better described with the structured formula Pr6[MoO4]8[Mo2O7]. The coordination numbers around the Pr3+ cations are seven (1×) and eight (2×) while all four [MoO4]2− anions are again surrounded by five Pr3+ cations each. Six of the latter represent the coordination environment around the [Mo2O7]2− entities. Besides the thorough comparison of the crystal structures single crystal Raman spectra were recorded for both Pr6Mo10O39 phases.


IUCrData ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
H. Lars Deubner ◽  
Florian Kraus

Single crystals of ThI4, thorium(IV) tetraiodide, were grown from thorium dioxide and aluminium triiodide. In comparison with the structure model reported previously for this compound [Zalkinet al.(1964).Inorg. Chem.3, 639–644], we have determined the lattice parameters and fractional coordinates to a much higher precision, also leading to a better reliability factor (R= 0.029versus0.09). The coordination number of the ThIVatom is eight. Its coordination polyhedron has the shape of an irregular square antiprism. The I atoms each bridge two ThIVatoms, resulting in the formation of infinite layers parallel to (-101) that can be described with the Niggli formula2∞[ThI6/2I2/2].


1985 ◽  
Vol 40 (6) ◽  
pp. 726-729 ◽  
Author(s):  
Klaus Güde ◽  
Christoph Hebecker

Abstract Single crystals of KSc2F7 have been prepared from a mixture of KF and ScF3 . The samples were investigated by X-ray methods. KSc2F7 crystallizes orthorhombically with a = 10.643(2), b = 6.540(1), c = 4.030(1) Å. These data indicate a close crystallographic connection to the monoclinic unit cell of KIn2F7 [1], But in contrast to KIn2F7 , KSc2 F7 crystallizes in space group No. 65. Cmmm - D192h. The R-value for 341 observed independent reflections is 0.060.


2020 ◽  
Vol 84 (5) ◽  
pp. 699-704
Author(s):  
Luca Bindi ◽  
Andrew C. Roberts ◽  
Cristian Biagioni

AbstractAlstonite, BaCa(CO3)2, is a mineral described almost two centuries ago. It is widespread in Nature and forms magnificent cm-sized crystals. Notwithstanding, its crystal structure was still unknown. Here, we report the crystal-structure determination of the mineral and discuss it in relationship to other polymorphs of BaCa(CO3)2. Alstonite is trigonal, space group P31m, with unit-cell parameters a = 17.4360(6), c = 6.1295(2) Å, V = 1613.80(9) Å3 and Z = 12. The crystal structure was solved and refined to R1 = 0.0727 on the basis of 4515 reflections with Fo > 4σ(Fo) and 195 refined parameters. Alstonite is formed by the alternation, along c, of Ba-dominant and Ca-dominant layers, separated by CO3 groups parallel to {0001}. The main take-home message is to show that not all structure determinations of minerals/compounds can be solved routinely. Some crystals, even large ones displaying excellent diffraction quality, can be twinned in complex ways, thus making their study a crystallographic challenge.


1994 ◽  
Vol 49 (10) ◽  
pp. 1444-1447 ◽  
Author(s):  
Helmut Goesmann ◽  
Dieter Fenske

AbstractSingle crystals of the title compound have been prepared by the reaction of benzonitrile with LiN-(SiMe3)2 in hexane and subsequent evaporation of the solvent. Space group P21/n, Z = 4, structure solution with 7945 observed unique reflections. R = 0.052. Lattice dimensions at -70 °C: a = 1485.2(9); b = 2486.9(11); c = 1568.9(8) pm; β = 91.06(4)°. The compound forms a trimeric ion ensemble in which two of the lithium cations are coordinated by three nitrogen atoms of two phenylamidinate an ions, the other one by four nitrogen atoms of two chelating phenylaminidate anions and in addition by the nitrogen atom of a benzonitrile molecule.


1984 ◽  
Vol 39 (5) ◽  
pp. 582-585 ◽  
Author(s):  
Klaus Brodersen ◽  
Manfred Cygan ◽  
Hans-Ulrich Hummel

Single crystals of SrHg(SeCN)4 · 4 pyridine are prepared by reaction of K2Hg(SeCN)4 with SrCl2 in CH3OH/C2H5OH in the presence of pyridine.The crystal structure was solved with X-ray methods (Mr = 1024.1, space group P4̄n2, Z = 2, a = 9.552(2) Å, c = 17.610(7) Å, V = 1606.7 Å3, λ(AgKα) = 0.5583 Å, dc = 2.12 g cm-3, μ(AgKα) = 57.40 cm-1, F(000) = 943.7, T = 298 K. Final R = 0.043 for 1050 independent reflections).The structure consists of nearly tetrahedral Hg(SeCN)4-units. The SeCN-group is linear within the experimental error. The N-atoms of SeCN and pyridine contribute to the Archimedean antiprismatic coordination of strontium


Sign in / Sign up

Export Citation Format

Share Document