scholarly journals Crystal structure of the fluorescent protein fromDendronephthyasp. in both green and photoconverted red forms

2016 ◽  
Vol 72 (8) ◽  
pp. 922-932 ◽  
Author(s):  
Nadya V. Pletneva ◽  
Sergei Pletnev ◽  
Alexey A. Pakhomov ◽  
Rita V. Chertkova ◽  
Vladimir I. Martynov ◽  
...  

The fluorescent protein fromDendronephthyasp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the Cα—N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double Cα=Cβbond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.

2011 ◽  
Vol 75 (6) ◽  
pp. 2823-2832
Author(s):  
P. Elliott ◽  
A. Pring

AbstractThe crystal structure of the manganese phosphate mineral gatehouseite, ideally Mn52+(PO4)2(OH)4, space group P212121, a = 17.9733(18), b = 5.6916(11), c = 9.130(4) Å, V= 933.9(4) Å3, Z = 4, has been solved by direct methods and refined from single-crystal X-ray diffraction data (T = 293 K) to an R index of 3.76%. Gatehouseite is isostructural with arsenoclasite and with synthetic Mn52+(PO4)2(OH)4. The structure contains five octahedrally coordinated Mn sites, occupied by Mn plus very minor Mg with observed <Mn—O> distances from 2.163 to 2.239 Å. Two tetrahedrally coordinated P sites, occupied by P, Si and As, have <P—O> distances of 1.559 and 1.558 Å. The structure comprises two types of building unit. A strip of edge-sharing Mn(O,OH)6 octahedra, alternately one and two octahedra wide, extends along [010]. Chains of edge- and corner-shared Mn(O,OH)6 octahedra coupled by PO4 tetrahedra extend along [010]. By sharing octahedron and tetrahedron corners, these two units form a dense three-dimensional framework, which is further strengthened by weak hydrogen bonding. Chemical analyses by electron microprobe gave a unit formula of (Mn4.99Mg0.02)Σ5.01(P1.76Si0.07(As0.07)Σ2.03O8(OH)3.97.


2015 ◽  
Vol 71 (10) ◽  
pp. o697-o698 ◽  
Author(s):  
Francesca A. Vaccaro ◽  
Lynn V. Koplitz ◽  
Joel T. Mague

The asymmetric unit of the title salt, C7H7N2+·BF4−, comprises two independent but nearly identical formula units. The solid-state structure comprises corrugated layers of cations and anions, formed by C—H...F hydrogen bonding, that are approximately parallel to (010). Further C—H...F hydrogen bonding consolidates the three-dimensional architecture. The sample was refined as a two-component non-merohedral twin.


2015 ◽  
Vol 71 (12) ◽  
pp. m275-m276 ◽  
Author(s):  
Waqas Sethi ◽  
Heini V. Johannesen ◽  
Thorbjørn J. Morsing ◽  
Stergios Piligkos ◽  
Høgni Weihe

The title compound, [Co2(L)2]3+·3NO3−[whereL= CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris(2-hydroxyethylaminomethyl)ethane. The cobalt(III) dimer has an interesting and uncommon O—H...O hydrogen-bonding motif with the three bridging hydroxy H atoms each being equally disordered over two positions. In the dimeric trication, the octahedrally coordinated CoIIIatoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N—H...O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either D or L molecules. The crystal used for this study is a D crystal.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Antoine Blaise Kama ◽  
Mamadou Sidibe ◽  
Cheikh Abdoul Khadre Diop ◽  
Florent Blanchard

The title compound, [Co(C6H6NO3S)2(H2O)2] n , was obtained from a mixture of Co(NO3)2·6H2O and a previously synthesized salt, namely CyNH3·NH2PhSO3, in a 1:1 ratio (Cy = cyclohexyl; Ph = phenyl). The crystal structure consists of a three-dimensional supramolecular framework, in which polymeric layers are interconnected via N—H...O and O—H...O hydrogen bonding. The polymeric layers are formed by an interconnection of neighbouring cobalt(II) cations via NH2PhSO3 − bridges. Each cobalt(II) cation is surrounded by four NH2PhSO3 − moieties and two water molecules, leading to a distorted octahedral environment.


2006 ◽  
Vol 62 (7) ◽  
pp. o2951-o2952 ◽  
Author(s):  
Si-Min Wu ◽  
Ming Li ◽  
Jiang-Feng Xiang ◽  
Liang-Jie Yuan ◽  
Ju-Tang Sun

The crystal structure of the title compound, C2H10N2 2+·C6H2O4S2−·2H2O, is built of ethylenediammonium dications, occupying a special position on an inversion center, thiophene-2,5-dicarboxylate dianions, in a special position on the twofold axis, and water molecules in general positions. All residues are involved in an extensive hydrogen-bonding system, which links them into a three-dimensional supramolecular arrangement.


2006 ◽  
Vol 62 (4) ◽  
pp. m796-m798 ◽  
Author(s):  
Zerrin Heren ◽  
Cem Cüneyt Ersanlı ◽  
Cem Keser ◽  
Nazan Ocak Ískeleli

The crystal structure of the title compound, [Co(C6H4NO2)2(H2O)2]·2H2O, has been reinvestigated with improved precision [previous reports: Chang et al. (1972). J. Coord. Chem. 2, 31–34; Lumme et al. (1969). Suom. Kemistil. B, 42, 270]. In the title compound, the Co atom is located on an inversion center and its coordination can be described as slightly distorted octahedral, equatorially trans-coordinated by two N and O atoms of two picolinate ligands and axially coordinated by two O atoms of the water molecules. Intermolecular O—H...O and C—H...O hydrogen-bonding interactions result in the formation of an intricate three-dimensional network.


Author(s):  
Yukiko Yamaguchi-Terasaki ◽  
Takashi Fujihara ◽  
Akira Nagasawa ◽  
Sumio Kaizaki

In the neutral complex molecule of the title compound,fac-[CrCl3(tpa)] [tpa is tris(pyridin-2-yl)amine; C15H12N4], the CrIIIion is bonded to three N atoms that are constrained to afacialarrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C—H...N and C—H...Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.


2007 ◽  
Vol 63 (3) ◽  
pp. m761-m763 ◽  
Author(s):  
Yan Jiao ◽  
Zhao-Rui Pan ◽  
Zhi-Jie Fang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the crystal structure of the title compound, [Ni(C6H4N2O4S)(H2O)3]·2.5H2O, the NiII atom is six-coordinated by one 2-(6-oxido-4-oxo-3,4-dihydropyimidin-2-ylsulfanyl)acetate ligand and three water molecules. Hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and between the water molecules and the organic ligand result in a three-dimensional network structure.


Sign in / Sign up

Export Citation Format

Share Document