scholarly journals Molecular symmetry-constrained systematic search approach to structure solution of the coiled-coil SRGAP2 F-BARx domain

2016 ◽  
Vol 72 (12) ◽  
pp. 1241-1253 ◽  
Author(s):  
Michael Sporny ◽  
Julia Guez-Haddad ◽  
David G. Waterman ◽  
Michail N. Isupov ◽  
Yarden Opatowsky

SRGAP2 (Slit–Robo GTPase-activating protein 2) is a cytoplasmic protein found to be involved in neuronal branching, restriction of neuronal migration and restriction of the length and density of dendritic postsynaptic spines. The extended F-BAR (F-BARx) domain of SRGAP2 generates membrane protrusions when expressed in COS-7 cells, while most F-BARs induce the opposite effect: membrane invaginations. As a first step to understand this discrepancy, the F-BARx domain of SRGAP2 was isolated and crystallized after co-expression with the carboxy domains of the protein. Diffraction data were collected from two significantly non-isomorphous crystals in the same monoclinicC2 space group. A correct molecular-replacment solution was obtained by applying a molecular symmetry-constrained systematic search approach that took advantage of the conserved biological symmetry of the F-BAR domains. It is shown that similar approaches can solve other F-BAR structures that were previously determined by experimental phasing. Diffraction data were reprocessed with a high-resolution cutoff of 2.2 Å, chosen using less strict statistical criteria. This has improved the outcome of multi-crystal averaging and other density-modification procedures.

Author(s):  
R. B. Hammond ◽  
M. J. Jones ◽  
K. J. Roberts ◽  
H. Kutzke ◽  
H. Klapper

AbstractIn this paper we report the crystal structure solution of a meta-stable phase of phenyl salicylate (salol). This modification, which is obtained from a super-cooled melt, has been observed before, but the structure has not been previously determined. Structure solution was achieved by a procedure combining a computer based systematic search method with a subsequent Rietveld refinement of experimental X-ray powder diffraction data. A clustering procedure to group similar trial structures based upon energy minimisations is discussed. The best trial structure identified by the combination of a systematic search and clustering was refined using the Rietveld method and a final structure with a weighted pattern index


2020 ◽  
Vol 76 (3) ◽  
pp. 272-284 ◽  
Author(s):  
Jens M. H. Thomas ◽  
Ronan M. Keegan ◽  
Daniel J. Rigden ◽  
Owen R. Davies

The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.


2019 ◽  
Author(s):  
Carmen Guguta ◽  
Jan M.M. Smits ◽  
Rene de Gelder

A method for the determination of crystal structures from powder diffraction data is presented that circumvents the difficulties associated with separate indexing. For the simultaneous optimization of the parameters that describe a crystal structure a genetic algorithm is used together with a pattern matching technique based on auto and cross correlation functions.<br>


2002 ◽  
Vol 353 (3-4) ◽  
pp. 185-194 ◽  
Author(s):  
Scott Habershon ◽  
Kenneth D.M. Harris ◽  
Roy L. Johnston ◽  
Giles W. Turner ◽  
Jennifer M. Johnston

2019 ◽  
Vol 234 (4) ◽  
pp. 257-268 ◽  
Author(s):  
Carina Schlesinger ◽  
Michael Bolte ◽  
Martin U. Schmidt

Abstract Structure solution of molecular crystals from powder diffraction data by real-space methods becomes challenging when the total number of degrees of freedom (DoF) for molecular position, orientation and intramolecular torsions exceeds a value of 20. Here we describe the structure determination from powder diffraction data of three pharmaceutical salts or cocrystals, each with four molecules per asymmetric unit on general position: Lamivudine camphorsulfonate (1, P 21, Z=4, Z′=2; 31 DoF), Theophylline benzamide (2, P 41, Z=8, Z′=2; 23 DoF) and Aminoglutethimide camphorsulfonate hemihydrate [3, P 21, Z=4, Z′=2; 31 DoF (if the H2O molecule is ignored)]. In the salts 1 and 3 the cations and anions have two intramolecular DoF each. The molecules in the cocrystal 2 are rigid. The structures of 1 and 2 could be solved without major problems by DASH using simulated annealing. For compound 3, indexing, space group determination and Pawley fit proceeded without problems, but the structure could not be solved by the real-space method, despite extensive trials. By chance, a single crystal of 3 was obtained and the structure was determined by single-crystal X-ray diffraction. A post-analysis revealed that the failure of the real-space method could neither be explained by common sources of error such as incorrect indexing, wrong space group, phase impurities, preferred orientation, spottiness or wrong assumptions on the molecular geometry or other user errors, nor by the real-space method itself. Finally, is turned out that the structure solution failed because of problems in the extraction of the integrated reflection intensities in the Pawley fit. With suitable extracted reflection intensities the structure of 3 could be determined in a routine way.


2011 ◽  
Vol 44 (4) ◽  
pp. 865-872 ◽  
Author(s):  
Ludmila Urzhumtseva ◽  
Alexandre Urzhumtsev

Crystallographic Fourier maps may contain barely interpretable or non-interpretable regions if these maps are calculated with an incomplete set of diffraction data. Even a small percentage of missing data may be crucial if these data are distributed non-uniformly and form connected regions of reciprocal space. Significant time and effort can be lost trying to interpret poor maps, in improving them by phase refinement or in fighting against artefacts, whilst the problem could in fact be solved by completing the data set. To characterize the distribution of missing reflections, several types of diagrams have been suggested in addition to the usual plots of completeness in resolution shells and cumulative data completeness. A computer program,FOBSCOM, has been developed to analyze the spatial distribution of unmeasured diffraction data, to search for connected regions of unmeasured reflections and to obtain numeric characteristics of these regions. By performing this analysis, the program could help to save time during structure solution for a number of projects. It can also provide information about a possible overestimation of the map quality and model-biased features when calculated values are used to replace unmeasured data.


Sign in / Sign up

Export Citation Format

Share Document