Crystal structures of the GH6 Orpinomyces sp. Y102 CelC7 enzyme with exo and endo activity and its complex with cellobiose

2019 ◽  
Vol 75 (12) ◽  
pp. 1138-1147
Author(s):  
Hsiao-Chuan Huang ◽  
Liu-Hong Qi ◽  
Yo-Chia Chen ◽  
Li-Chu Tsai

The catalytic domain (residues 128–449) of the Orpinomyces sp. Y102 CelC7 enzyme (Orp CelC7) exhibits cellobiohydrolase and cellotriohydrolase activities. Crystal structures of Orp CelC7 and its cellobiose-bound complex have been solved at resolutions of 1.80 and 2.78 Å, respectively. Cellobiose occupies subsites +1 and +2 within the active site of Orp CelC7 and forms hydrogen bonds to two key residues: Asp248 and Asp409. Furthermore, its substrate-binding sites have both tunnel-like and open-cleft conformations, suggesting that the glycoside hydrolase family 6 (GH6) Orp CelC7 enzyme may perform enzymatic hydrolysis in the same way as endoglucanases and cellobiohydrolases. LC-MS/MS analysis revealed cellobiose (major) and cellotriose (minor) to be the respective products of endo and exo activity of the GH6 Orp CelC7.

2015 ◽  
Vol 290 (19) ◽  
pp. 11819-11832 ◽  
Author(s):  
Christopher M. Bianchetti ◽  
Taichi E. Takasuka ◽  
Sam Deutsch ◽  
Hannah S. Udell ◽  
Eric J. Yik ◽  
...  

2000 ◽  
Vol 347 (3) ◽  
pp. 865-873 ◽  
Author(s):  
Patricia NTARIMA ◽  
Wim NERINCKX ◽  
Klaus KLARSKOV ◽  
Bart DEVREESE ◽  
Mahalingeshwara K. BHAT ◽  
...  

A series of Ω-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families 10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant to electrophilic attack of active-site carboxyl residues, glycoside hydrolases of family 11 (Thermomyces lanuginosus Xyn and Trichoderma reesei Xyn II) are irreversibly inhibited. The apparent inactivation and association constants (ki, 1/Ki) are one order of magnitude higher for the xylobiose and xylotriose derivatives. The effects of the aglycone chain length can clearly be described. Xylobiose and n-alkyl β-D-xylopyranosides are competitive ligands and provide protection against inactivation. MS measurements showed 1:1 stoichiometries in most labelling experiments. Electrospray ionization MS/MS analysis revealed the nucleophile Glu86 as the modified residue in the T. lanuginosus xylanase when 2,3-epoxypropyl β-D-xylopyranoside was used, whereas the acid/base catalyst Glu178 was modified by the 3,4-epoxybutyl derivative. The active-site residues Glu86 and Glu177 in T. reesei Xyn II are similarly modified, confirming earlier X-ray crystallographic data [Havukainen, Törrönen, Laitinen and Rouvinen (1996) Biochemistry 35, 9617-9624]. The inability of the Ω-epoxyalkyl xylo(oligo)saccharide derivatives to inactivate family-10 enzymes is discussed in terms of different ligand-subsite interactions.


2002 ◽  
Vol 184 (15) ◽  
pp. 4124-4133 ◽  
Author(s):  
Kaveh Emami ◽  
Tibor Nagy ◽  
Carlos M. G. A. Fontes ◽  
Luis M. A. Ferreira ◽  
Harry J. Gilbert

ABSTRACT Pseudomonas cellulosa is a highly efficient xylan-degrading bacterium. Genes encoding five xylanases, and several accessory enzymes, which remove the various side chains that decorate the xylan backbone, have been isolated from the pseudomonad and characterized. The xylanase genes consist of xyn10A, xyn10B, xyn10C, xyn10D, and xyn11A, which encode Xyn10A, Xyn10B, Xyn10C, Xyn10D, and Xyn11A, respectively. In this study a sixth xylanase gene, xyn11B, was isolated which encodes a 357-residue modular enzyme, designated Xyn11B, comprising a glycoside hydrolase family 11 catalytic domain appended to a C-terminal X-14 module, a homologue of which binds to xylan. Localization studies showed that the two xylanases with glycoside hydrolase family (GH) 11 catalytic modules, Xyn11A and Xyn11B, are secreted into the culture medium, whereas Xyn10C is membrane bound. xyn10C, xyn10D, xyn11A, and xyn11B were all abundantly expressed when the bacterium was cultured on xylan or β-glucan but not on medium containing mannan, whereas glucose repressed transcription of these genes. Although all of the xylanase genes were induced by the same polysaccharides, temporal regulation of xyn11A and xyn11B was apparent on xylan-containing media. Transcription of xyn11A occurred earlier than transcription of xyn11B, which is consistent with the predicted mode of action of the encoded enzymes. Xyn11A, but not Xyn11B, exhibits xylan esterase activity, and the removal of acetate side chains is required for xylanases to hydrolyze the xylan backbone. A transposon mutant of P. cellulosa in which xyn11A and xyn11B were inactive displayed greatly reduced extracellular but normal cell-associated xylanase activity, and its growth rate on medium containing xylan was indistinguishable from wild-type P. cellulosa. Based on the data presented here, we propose a model for xylan degradation by P. cellulosa in which the GH11 enzymes convert decorated xylans into substituted xylooligosaccharides, which are then hydrolyzed to their constituent sugars by the combined action of cell-associated GH10 xylanases and side chain-cleaving enzymes.


2005 ◽  
Vol 354 (2) ◽  
pp. 425-435 ◽  
Author(s):  
T. Collins ◽  
D. De Vos ◽  
A. Hoyoux ◽  
S.N. Savvides ◽  
C. Gerday ◽  
...  

2018 ◽  
Vol 475 (9) ◽  
pp. 1533-1551 ◽  
Author(s):  
Franz J. St John ◽  
Diane Dietrich ◽  
Casey Crooks ◽  
Peter Balogun ◽  
Vesna de Serrano ◽  
...  

Glycoside hydrolase family 30 subfamily 8 (GH30-8) β-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the −3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains.


2021 ◽  
Vol 478 (4) ◽  
pp. 943-959
Author(s):  
Samar Ballabha Mohapatra ◽  
Narayanan Manoj

Members of the glycoside hydrolase family 4 (GH4) employ an unusual glycosidic bond cleavage mechanism utilizing NAD(H) and a divalent metal ion, under reducing conditions. These enzymes act upon a diverse range of glycosides, and unlike most other GH families, homologs here are known to accommodate both α- and β-anomeric specificities within the same active site. Here, we report the catalytic properties and the crystal structures of TmAgu4B, an α-d-glucuronidase from the hyperthermophile Thermotoga maritima. The structures in three different states include the apo form, the NADH bound holo form, and the ternary complex with NADH and the reaction product d-glucuronic acid, at 2.15, 1.97 and 1.85 Å resolutions, respectively. These structures reveal the step-wise route of conformational changes required in the active site to achieve the catalytically competent state, and illustrate the direct role of residues that determine the reaction mechanism. Furthermore, a structural transition of a helical region in the active site to a turn geometry resulting in the rearrangement of a unique arginine residue governs the exclusive glucopyranosiduronic acid recognition in TmAgu4B. Mutational studies show that modifications of the glycone binding site geometry lead to catalytic failure and indicate overlapping roles of specific residues in catalysis and substrate recognition. The data highlight hitherto unreported molecular features and associated active site dynamics that determine the structure–function relationships within the unique GH4 family.


Sign in / Sign up

Export Citation Format

Share Document