A radical approach to radicals

Author(s):  
Youjia Liu ◽  
Malgorzata Biczysko ◽  
Nigel W. Moriarty

Nitroxide radicals are characterized by a long-lived spin-unpaired electronic ground state and are strongly sensitive to their chemical surroundings. Combined with electron paramagnetic resonance spectroscopy, these electronic features have led to the widespread application of nitroxide derivatives as spin labels for use in studying protein structure and dynamics. Site-directed spin labelling requires the incorporation of nitroxides into the protein structure, leading to a new protein–ligand molecular model. However, in protein crystallographic refinement nitroxides are highly unusual molecules with an atypical chemical composition. Because macromolecular crystallography is almost entirely agnostic to chemical radicals, their structural information is generally less accurate or even erroneous. In this work, proteins that contain an example of a radical compound (Chemical Component Dictionary ID MTN) from the nitroxide family were re-refined by defining its ideal structural parameters based on quantum-chemical calculations. The refinement results show that this procedure improves the MTN ligand geometries, while at the same time retaining higher agreement with experimental data.

Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2735 ◽  
Author(s):  
J. Jacques Jassoy ◽  
Caspar A. Heubach ◽  
Tobias Hett ◽  
Frédéric Bernhard ◽  
Florian R. Haege ◽  
...  

Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.


Sign in / Sign up

Export Citation Format

Share Document