Intelligent performance diagnostics of a gas turbine engine using user‐friendly interface neural networks

2004 ◽  
Vol 76 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Chang‐duk Kong ◽  
Ja‐young Ki ◽  
Myoung‐cheol Kang ◽  
Seong‐hee Kho
Author(s):  
Ibrahem Mohamed Ibrahem ◽  
Ouassima Akhrif ◽  
Hany Moustapha ◽  
Martin Staniszewski

Abstract Gas turbine is a complex system operating in non-stationary operation conditions for which traditional model-based modeling approaches have poor generalization capabilities. To address this, an investigation of a novel data-driven neural networks based model approach for a three-spool aero-derivative gas turbine engine (ADGTE) for power generation during its loading and unloading conditions is reported in this paper. For this purpose, a non-linear autoregressive network with exogenous inputs (NARX) is used to develop this model in MATLAB environment using operational closed-loop data collected from Siemens (SGT-A65) ADGTE. Inspired by the way biological neural networks process information and by their structure which changes depending on their function, multiple-input single-output (MISO) NARX models with different configurations were used to represent each of the ADGTE output parameters with the same input parameters. Usage of a single neural network to represent each of the system output parameters may not be able to provide an accurate prediction for unseen data and as a consequence, provides poor generalization. To overcome this problem, an ensemble of MISO NARX models is used to represent each output parameter. The major challenge of the ensemble generation is to decide how to combine results produced by the ensemble's components. In this paper, a novel hybrid dynamic weighting method (HDWM) is proposed. The simulation results show improvement in accuracy and robustness by using the proposed modeling approach.


Author(s):  
P. R. Spina ◽  
G. Torella ◽  
M. Venturini

In the paper, Expert Systems (ESs) developed to support gas turbine engine maintenance and diagnostics are presented. The ESs are applied to turbofans and Auxiliary Power Units and are developed both in procedural (Visual Basic) and declarative (Turbo Prolog) languages. The paper reports some examples of ES utilization, so highlighting high interactivity and user-friendly interface. Moreover, for each ES, the main working features as well as strong and weak points are put into evidence.


Author(s):  
Ibrahem M. A. Ibrahem ◽  
Ouassima Akhrif ◽  
Hany Moustapha ◽  
Martin Staniszewski

Abstract Gas turbine is a complex system operating in non-stationary operation conditions for which traditional model-based modelling approaches have poor generalization capabilities. To address this, an investigation of a novel data driven neural networks based model approach for a three-spool aero-derivative gas turbine engine (ADGTE) for power generation during its loading and unloading conditions is reported in this paper. For this purpose, a non-linear autoregressive network with exogenous inputs (NARX) is used to develop this model in MATLAB environment using operational closed-loop data collected from Siemens (SGT-A65) ADGTE. Inspired by the way biological neural networks process information and by their structure which changes depending on their function, multiple-input single-output (MISO) NARX models with different configurations were used to represent each of the ADGTE output parameters with the same input parameters. First, data preprocessing and estimation of the order of these MISO models were performed. Next, a computer program code was developed to perform a comparative study and to select the best NARX model configuration, which can represent the system dynamics. Usage of a single neural network to represent each of the system output parameters may not be able to provide an accurate prediction for unseen data and as a consequence, provides poor generalization. To overcome this problem, an ensemble of MISO NARX models is used to represent each output parameter. The major challenge of the ensemble generation is to decide how to combine results produced by the ensemble’s components. In this paper, a novel hybrid dynamic weighting method (HDWM) is proposed. The verification of this method was performed by comparing its performance with three of the most popular basic methods for ensemble integration: basic ensemble method (BEM), median rule and dynamic weighting method (DWM). Finally, the generated ensembles of MISO NARX models for each output parameter were evaluated using unseen data (testing data). The simulation results based on datasets consisting for experimental data as well as data provided by Siemens high fidelity thermodynamic transient simulation program show improvement in accuracy and robustness by using the proposed modelling approach.


Sign in / Sign up

Export Citation Format

Share Document