Comparison of the Preisach and Jiles‐Atherton models to take hysteresis phenomenon into account in finite element analysis

Author(s):  
Abdelkader Benabou ◽  
Stéphane Clénet ◽  
Francis Piriou
2006 ◽  
Vol 306-308 ◽  
pp. 1151-1156 ◽  
Author(s):  
Chong Du Cho ◽  
Heung Shik Lee ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

In this paper, a finite element code especially for micro-magnetostrictive actuators was developed. Two significant characteristics of the presented finite element code are: (1) the magnetostrictive hysteresis phenomenon is effectively taken into account; (2) intrinsic geometric feature of typical thin film structures of large length to thickness ratio, which makes it very difficult to construct finite element mesh in the region of the thin film, is considered reasonably in modeling micro-magneostrictive actuators. For verification purpose, magnetostrictive thin films were fabricated and tested in the form of a cantilevered actuator. The Tb-Fe film and Sm-Fe film are sputtered on the Si and Polyimide substrates individually. The magnetic and magnetostrictive properties of the sputtered magnetostrictive films are measured. The measured magnetostrictive coefficients are compared with the numerically calculated ones.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document