Effects of acetophenone‐formaldehyde resin on the degradation of high‐density polyethylene by UV‐irradiation

2006 ◽  
Vol 35 (5) ◽  
pp. 247-251 ◽  
Author(s):  
Y. Yildiz ◽  
N. Kizilcan ◽  
N. Uyanik
2020 ◽  
Vol 174 ◽  
pp. 109098 ◽  
Author(s):  
Hsiang-Chun Hsueh ◽  
Jae Hyun Kim ◽  
Sara Orski ◽  
Andrew Fairbrother ◽  
Deborah Jacobs ◽  
...  

2020 ◽  
Vol 54 (28) ◽  
pp. 4369-4385
Author(s):  
Ricardo Ritter de Souza Barnasky ◽  
Alexsandro Bayestorff da Cunha ◽  
Amanda Dantas de Oliveira ◽  
Martha Andreia Brand ◽  
Gabriela Escobar Hochmuller da Silva ◽  
...  

This work provides a study about the incorporation of a high density polyethylene (HDPE) matrix composite in medium density fiberboards (MDF). A composite was processed in a single screw extruder with 5% of Pinus spp fibers in a HDPE matrix and applied as reinforcing agent in MDFs, as well as pure HDPE, in 11 different variations, using 12% of urea-formaldehyde resin and nominal density of 750 kg.m−3. The composite and the pure HDPE were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The DSC results showed that both polymeric matrix and composite presented the same melting temperature but the composite had a reduced melting enthalpy and crystallinity due to thermal history. SEM analysis showed a well distribution of fibers on the composite. The results of technological properties of MDFs were compared to commercial MDF standards. The MDF reinforced with 40% of polymeric composite reached all minimum standard requirements, being the most recommended to be used as an alternative to conventional MDF, in terms of physical and mechanical performance.


2003 ◽  
Vol 774 ◽  
Author(s):  
Susan M. Rea ◽  
Serena M. Best ◽  
William Bonfield

AbstractHAPEXTM (40 vol% hydroxyapatite in a high-density polyethylene matrix) and AWPEX (40 vol% apatite-wollastonite glass ceramic in a high density polyethylene matrix) are composites designed to provide bioactivity and to match the mechanical properties of human cortical bone. HAPEXTM has had clinical success in middle ear and orbital implants, and there is great potential for further orthopaedic applications of these materials. However, more detailed in vitro investigations must be performed to better understand the biological interactions of the composites and so the bioactivity of each material was assessed in this study. Specifically, the effects of controlled surface topography and ceramic filler composition on apatite layer formation in acellular simulated body fluid (SBF) with ion concentration similar to those of human blood plasma were examined. Samples were prepared as 1 cm × 1 cm × 1 mm tiles with polished, roughened, or parallel-grooved surface finishes, and were incubated in 20 ml of SBF at 36.5 °C for 1, 3, 7, or 14 days. The formation of a biologically active apatite layer on the composite surface after immersion was demonstrated by thin-film x-ray diffraction (TF-XRD), environmental scanning electron microscopy (ESEM) imaging and energy dispersive x-ray (EDX) analysis. Variations in sample weight and solution pH over the period of incubation were also recorded. Significant differences were found between the two materials tested, with greater bioactivity in AWPEX than HAPEXTM overall. Results also indicate that within each material the surface topography is highly important, with rougher samples correlated to earlier apatite formation.


Sign in / Sign up

Export Citation Format

Share Document